

DONG FANG DIAN QI PING LUN

- ◎ 中国发电设备专业技术期刊、首届《CAJ-CD规范》执行优秀期刊
- ◎《中国学术期刊综合评价数据库(CAJCED)》期刊源
- ◎《万方数据-数字化期刊群》全文收录
- ◎《中国核心期刊(遴选)数据库》期刊源
- ◎《中文科技期刊数据库》(维普网)全文收录
- ◎《中国期刊全文数据库(CJFD)》全文收录
- ◎《超星期刊域出版平台》全文收录

传统与新能源技术协同驱动新质生产力发展的前沿研究

第 39 卷第 5 期 总第 159 期 (双月刊, 1987年创刊)

東方電氣評論

编辑委员会

主任委员: 胡修奎

副主任委员: 董娜 唐健

委员: 王大伦 王拯元 王 騃 艾 松 石清华 卢 洪 令红兵 冯 涛 刘泰生 刘德民 江国焱 孙 奇 李维成 李 婷 邹 杰 宋聚众 陈文学 范小平 周 杰 赵永智 钟连兵 袁 凌 草尔兵 莫春鸿 铎 林 梁权伟 舒华安 曾明富 谢光有 鄢治国 赖成毅 雷 宇 潘绍成

秘书长: 唐健

主管:中国东方电气集团有限公司

主编: 胡修奎

副主编: 董娜 唐健 本期责任编辑:张媛

英文编辑:李宏

编辑出版:《东方电气评论》编辑部 地址:成都市高新西区西芯大道 18号

> 邮编: 611731 电话: 028-87898263

电子信箱: dfdqpl@dongfang.com 投稿网址: http://dfdqpl.xml-journal.net/

印刷单位:成都市新都华兴印务有限公司

国内发行:四川省报刊发行局

国外发行:中国出版对外贸易总公司北京 782 信箱

主编寄语(1
基础研究
基于状态观测器的单相 NPC 逆变器电流预估方法研究
新型固化工艺下绝缘漆膜的多因子绝缘老化特性研究
风冷燃料电池结构与运行工况多目标化重要性研究
烟气湿法脱硫用石灰石反应速率测定方法的研究及建立
数字制造
基于数字缸筒形阀的试验台测控系统 谭帅 贾小平 郭列等(31
火力发电
超超临界汽轮机变背压运行特性研究 袁鹏 白昆仑(38

水力发电

一种大型水轮机筒形阀改造的加工方法 …… 邱俊程 胡祥杰 龙超等(44)

风力发电

主办:中国东方电气集团有限公司·四川省动力工程学会 变桨系统测试平台及测试方法研究 ······· 杨代 李雨蒙(49) 适用于风电叶片状态监测的光纤加速度传感器设计与开发

...... 官雪梅 王裕祥 蔣恩超等(54)

光伏发电

工程技术

...... 袁浩 李占雷 银润邦等(76)

一种基于级联技术的高压直挂储能系统设计 谭建军 彭伟 王洋(80)

供水泵站高压永磁同步电动机应用能效分析 …… 张鉴成(86)

「期刊基本参数]CN51-1333/TM*1987*B*A4*88*zh*p*\\ 2008-750*14*2025-05

DONGFANG ELECTRIC REVIEW

2025-9-25 Vol. 39 No. 5 (Bimonthly, since 1987)

CONTENTS

...... YUAN Hao, LI Zhanlei, YIN Runbang, et al(76)

A Design of A Straight-hanging Energy Storage System Based on High-voltage

Cascade Technology TAN Jianjun, PENG Wei, WANG Yang(80) Energy Efficiency Analysis of High-voltage Permanent Magnet Synchronous Motor Applications in Water Supply Pump Stations ZHANG Jiancheng(86)

EDITORIAL BOARD

Chairman: HU Xiukui

Vice Chairmen: DONG Na, TANG Jian

Members: WANG Dalun, WANG Zhengyuan, WANG Ai, LIU Taisheng, LIU Demin, JIANG Guoyan, SUNQi, LI Weicheng, LI Ting, LI Xibin, YANG Jinbing, ZOU Jie, ZHAO Yongzhi, ZHONG Lianbing, YUAN Ling, MO Erbing, MO Chunhong, DUO Lin, LIANG Quanwei, SHU Huaan, ZENG Mingfu, XIE Guangyou, YAN Zhiguo, LAI Chengyi, LEI Yu, PAN Shaocheng

Chief Secretary: TANG Jian

Sponsor: Dongfang Electric Corporation Chief Editor: HU Xiukui Vice Chief Editors: DONG Na, TANG Jian Executive Editor: ZHANG Yuan English Editor:LI Hong Edited and Published by:

Editorial Department of Dongfang Electric Review No. 18 Xi Xin Avenue, Gao Xin Xi District, Chengdu, Sichuan, P. R. China

Postal Code: 611731

Tel: 028-87898263

 $\pmb{E-mail:}\ dfdqpl@dongfang.\ com$ Submission Website: http://dfdqpl.xml-journal.net/

Overseas Distrbution by:

China National Publishing Industry Trading Corporation (P. O. Box 782, Beijing, P. R. C.)

主编寄语

当前,全球能源格局深度变革,我国正加快构建清洁低碳、安全高效的新型能源体系,既是实现"双碳"目标的关键路径,更是培育和发展新质生产力的重要战场。新能源技术作为新型能源体系的核心驱动力,正与传统能源技术深度协同、迭代创新,为能源产业转型升级注入强劲动能,也为新质生产力的形成提供了坚实的技术底座。本期期刊聚焦能源领域前沿探索与技术突破,精选涵盖基础研究、数字制造、传统能源升级及新能源应用等多维度的研究成果,旨在呈现多学科交叉、产学研融合背景下,科技工作者以创新赋能能源发展、支撑新质生产力培育的实践与思考。

基础研究是技术突破的根基,更是新质生产力萌发的土壤。本期收录的单相 NPC 逆变器电流预估方法研究及绝缘漆膜的多因子绝缘老化特性研究等成果,从能源转换效率优化、关键材料性能升级入手,不断突破能源系统运行的理论极限,为新能源装备的高效集成、长期稳定运行提供了核心理论支撑,为后续工程应用与产业落地筑牢了创新基石。

数字技术与工程技术的深度融合,是能源系统提质增效、催生新质生产力的重要引擎。论文中流体传动与数字控制技术跨界融合,新型电力系统对大规模储能的迫切需求以及工业场景节能潜力挖掘——这些研究以数字化、智能化技术赋能能源装备与系统,不仅提升了能源生产、传输、消费全链条的效率与安全性,更推动能源产业从"传统制造"向"智能智造"转型,加速新质生产力的技术转化。

在新型能源体系构建中,传统能源的清洁高效升级与新能源的规模化应用缺一不可。本期关于传统能源领域的研究,聚焦火力发电装备的灵活性优化与先进制造工艺,通过技术创新拓宽传统能源清洁高效发展空间,实现与新能源的协同互补;而新能源板块的研究则呈现多元化突破态势,风电机组的测试与监测、光伏安全并网构建及光热电站应对复杂环境的科学方案,通过跨学科协同推动能源系统整体效能、可靠性与智能化升级,为新质生产力的培育汇聚多元创新力量。

新型能源体系的构建非一日之功,新质生产力的培育更需持续的科技突破。我们期待以这些研究为纽带,推动传统能源与新能源技术的深度交流与耦合创新,在保障能源安全的前提下,加速能源产业的技术更迭与业态升级。谨向所有深耕能源创新领域的研究者致以敬意,更期盼更多学者与工程师携手前行,以更前沿的技术、更开放的协作、更务实的实践,让科技创新成为支撑能源高质量发展的核心动力,为我国新型能源体系构建与经济社会高质量发展贡献更大力量。

《东方电气评论》编辑部 2025 年 9 月

基于状态观测器的单相 NPC 逆变器电流预估方法研究

周浩1 吴军1 曾婧瑶2* 陈清平1 曾磊1 朱卫兵1 周志聪1 董伟华1

1. 株洲中车时代电气股份有限公司、湖南 株洲 412001; 2. 华南理工大学电力学院、广州 510640

摘要:针对传统双闭环控制需要电流传感器导致的高成本问题,以单相三电平 NPC 离网逆变器为例,提出了一种基于状态观测器的电流预估方法。详细介绍了拓扑结构、数学模型描述、所提电流预估方法、整体闭环控制以及仿真测试结果。所提基于状态观测器的电流预估方法只需对输出电压进行采样即可预估电感电流和负载电流,可作为三电平 NPC 逆变器(3L-NPCI)电流内环控制系统的反馈量,减少了电流传感器的使用,降低了成本和体积。最后,在 10 kW 三电平 NPC 逆变器上进行仿真试验。测试结果表明,基于状态观测器的无电流传感器闭环控制方案可以使逆变器在仅需电压采样反馈的情况下获得良好的空载或整流性负载运行能力、电能质量以及动态性能。

关键词:三电平 NPC 逆变器(3L-NPCI); 电流预估方法; 状态观测器; 无电流传感器

中图分类号:TM464

文献标识码:A

文章编号:1001-9006(2025)05-0002-06

Research on Current Estimation Method of Single-phase NPC Inverter Based on State Observer

ZHOU Hao¹, WU Jun¹, ZENG Jingyao^{2*}, CHEN Qingping¹, ZENG Lei¹, ZHU Weibing¹, ZHOU Zhicong¹, DONG Weihua¹

(1. Zhuzhou CRRC Times Electric Co., Ltd., 412001, Zhuzhou, Hunan, China;

2. South China University of Technology, 510640, Guangzhou, China)

Abstract: Taking a single-phase three-level NPC off-grid inverter as an example, a current estimation method based on state observer is proposed to solve the problem of high cost caused by the need for current sensors for traditional double closed-loop control. The topology structure, mathematical model description, proposed current estimation method, overall closed-loop control and simulation test results are introduced in detail. The proposed current estimation method based on state observer only needs to sample the output voltage to estimate the inductor current and load current, which can be used as the feedback quantity of the three-level NPC inverter (3L-NPCI) current inner-loop control system, reducing the use of current sensors, and lowering cost and volume. Finally, the simulation tests are carried out on a 10 kW 3L-NPCI. The test results show that the proposed current sensorless closed loop control scheme based on state observer can enable the inverter to obtain good no-load or rectifier load operation capability, power quality and dynamic performance with only voltage sampling feedback.

Key words: three-level NPC inverter (3L-NPCI); current estimation method; state observer; current sensorless

收稿日期:2025-06-06

作者简介:周浩(1994—),男,2024 年毕业于华南理工大学控制科学与工程,工学博士,软件架构设计工程师。现在株洲中车时代电气股份有限公司中车电驱技术中心,主要从事多合一车载充电机电源仿真、控制与软件研发工作。通信邮箱:chnzhouhao@ outlook.com。曾靖瑶(2000—),女,华南理工大学电力学院,工学博士研究生,主要从事新能源发电技术及电力系统优化调度运行研究。通信邮箱:cnjyzeng@ outlook.com。

近些年来,三相或者单相三电平 NPC 逆变器 (3L-NPCI) 拓扑结构具有耐压等级高、dv/di 小、电压 THD 低等优点,广泛应用于变流器^[1]、电动车充电站^[2]、不间断电源(UPS)^[3-4]以及可再生能源发电系统^[5-7]中。然而,在实际工业应用中,控制方法和调制策略是目前 3L NPCI 的两个研究热点^[8-9]。

在传统的双闭环控制方法中,通常需要采样输 出 AC 电压以及电感电流作为控制环路的反馈量, 该控制回路通常包括一个带有 PR 控制器或 PI 控 制器的电流内环来调节逆变侧电感电流以及一个 带有 PI 控制器的电压外环来调节输出 AC 电压。 虽然传统双闭环控制易于实现并且具有良好的稳 态性能,但它需要大量的电压或者电流传感器,增 加了逆变器设备的成本以及体积。因此,文献[10] 提出了一种用于并网逆变器的新型降阶观测器控 制方法,该观测器仅需要一个电流传感器即可实现 并网逆变器的稳定运行。但是,需要 LOR 方法来优 化反馈增益,使得控制方法设计复杂化。在文献 [11]中,提出了一种仅具有电压反馈环路的模型预 测控制(MPC)用于三电平 T 型逆变器,并采用卡尔 曼观测器来实现无电流传感器的电容电流预估。 然而,控制方法设计和实现相当复杂,需要高性能 的数字控制器才能完成控制环路运算。此外,还文 献[12]探索了基于有限时间观测器的三电平逆变 器滑模控制,通过所提控制方法省去了电流传感器 的使用。但是,滑模控制存在抖振问题,算法实现 复杂。

为了减少电流传感器数量并减轻控制器的计算负担,本文提出了一种基于状态观测器的 3L-NPCI 电流预估方法。通过差分放大电路对 3L-NPCI 的输出 AC 电压进行采样,再结合控制环路中的调制电压,作为观测器的两个输入信号,可以预估出电感电流以及输出负载电流作为电流内环的反馈输入量。同时,将所提控制方法应用于 3L-NPCI 中,反映出所提控制方法具备准确的电流预估能力。最后,通过 10 kW 仿真模型验证了所提无电流传感器闭环控制方法的有效性和可行性。

1 拓扑结构及数学模型分析

单相三电平 NPC 离网逆变器的拓扑结构如图

1 所示,如果按照图 1 所示的三个 3L-NPCI 结构并联连接,则可以构建一个三相三电平离网逆变器。本文以单相 NPC 离网逆变器为例,研究其控制方法。其中, r_L 表示电感 L_f 的内阻;开关 S_1 和 S_3 、 S_2 和 S_4 的驱动信号分别是互补的;m 和 n 之间的电压是输出臂电压 V_{mn} 。

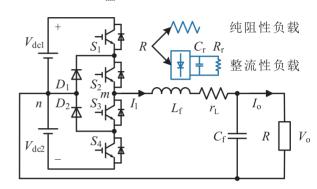


图 1 单相 3L NPCI 的拓扑结构

将电容电压(即逆变器的输出 AC 电压 V_o)和电感电流 I_1 为系统的状态变量,根据基尔霍夫电压定律(KVL)和基尔霍夫电流定律(KCL),可以推导出 3L-NPCI 的状态空间模型如式(1):

$$\begin{cases} \dot{x} = Ax + Bu + P\omega \\ v = Cx \end{cases} \tag{1}$$

式中,
$$x = \begin{bmatrix} V_{\text{o}} \\ I_{1} \end{bmatrix}$$
, $A = \begin{bmatrix} 0 & \frac{1}{C_{\text{f}}} \\ -\frac{1}{L_{\text{f}}} & -\frac{r_{\text{L}}}{L_{\text{f}}} \end{bmatrix}$, $B = \begin{bmatrix} 0 \\ \frac{1}{L_{\text{f}}} \end{bmatrix}$, $u = \begin{bmatrix} 0 \\ \frac{1}{L_{\text{f}}} \end{bmatrix}$

$$V_{\text{mn}}, \omega = I_{\text{o}}, P = \begin{bmatrix} -\frac{1}{C_{\text{f}}} \\ 0 \end{bmatrix}, C = \begin{bmatrix} 1 & 0 \end{bmatrix}_{\text{o}}$$

2 电流预估控制方法推导与分析

状态观测器是基于系统输入和输出的传递函数,通过已知的内部状态变量去预估出位置状态变量,收敛速度具有可控性,并且可以观测实际工程中难以测量的一些关键状态变量。

基于此,本文设计的观测器以采样 3L-NPCI 的输出 AC 电压 $V_{\rm o}$ 以及调制电压 $V_{\rm m}$ (值得注意的是,这里的是调制电压 $V_{\rm m}$ 通过采样输出桥臂电压 $V_{\rm mn}$ 而来,输出桥臂电压 $V_{\rm mn}$ 和调制电压 $V_{\rm m}$ 可以按比例进行转换)作为状态输入,计算原始系统与重构系统之间的输出状态误差,并依次将其反馈到输入端

以校正状态预估误差,最终形成渐进状态观测器的 闭环。此外,为了优化观测器的性能,可以通过设 计合适的反馈矩阵 H来实现。因此,所设计的状态 观测器结构的框图如图 2 所示。

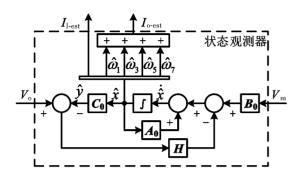


图 2 基于状态观测器的电流预估方法

在 3L-NPCI 中,输出负载电流 I_0 的重要组成成 份是基波(ω_1)和奇次谐波(这里仅考虑3次、5次以 及7次谐波,分别用 ω_3,ω_5 以及 ω_7 表示)。基于 此,对于3L-NPCI的输出负载电流 I。而言,输出负 载电流 I。是正弦信号,则相应的傅里叶级数展开表 达式为:

$$f(t) = \frac{2\sqrt{2}I_{m}}{\pi} \left(\sin\omega_{1}t + \frac{\sin3\omega_{1}t}{3} + \frac{\sin5\omega_{1}t}{5} + \frac{\sin7\omega_{1}t}{7}\right)$$
(2)

式中, I_m 表示输出负载电流 I_o 的幅值。

输出负载电流 I_{α} 是通过将观测到的基波 ω_{1} 和 奇次谐波 $\omega_3(\omega_3 = 3\omega_1)$ 、 $\omega_5(\omega_5 = 5\omega_1)$ 以及 $\omega_7(\omega_7 =$ $7\omega_1$)相加并积分得到,通过式的状态变换,则可以 将负载电流 I。中包含的基波以及 3 次、5 次以及 7 次谐波转换为观测的状态量。因此,变换后的状态 空间方程如式(3):

$$\begin{cases} \dot{x_0} = A_0 x_0 + B_0 u \\ y = C_0 x_0 \end{cases}$$

$$\overrightarrow{\text{TC}} + \mathbf{P} . \tag{3}$$

$$x_0 = [V_0 \quad I_1 \quad 0 \quad \omega_1 \quad 0 \quad \omega_3 \quad 0 \quad \omega_5 \quad 0 \quad \omega_7]^T \quad (4)$$

$$A_0 = \begin{bmatrix} A_{2\times 2} & P \\ 0 & S \end{bmatrix} \tag{5}$$

$$B_0 = [B \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0]^{\mathrm{T}}$$
 (6)

$$C_{0} = \begin{bmatrix} C & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \tag{7}$$

$$P = \begin{bmatrix} -\frac{1}{C_{\rm f}} & 0 & -\frac{1}{C_{\rm f}} & 0 & -\frac{1}{C_{\rm f}} & 0 & -\frac{1}{C_{\rm f}} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
(8)

 A_0 是一个满秩矩阵,故重构的系统是完全可观 测的。因此,根据图 2 所示的观测器框图,可以推导 出重构后的系统状态方程如式(9)-(10):

$$\begin{cases} \hat{x} = A_0 \hat{x} + H(y - \hat{y}) + B_0 u \\ \hat{y} = C_0 \hat{x} \end{cases}$$
 (9)

$$\hat{x} = (A_0 - HC_0)\hat{x} + Hy + B_0 u \tag{10}$$

结合被观测系统的状态方程,可推导出:

$$\dot{x} = A_0 x + B_0 u = (A_0 - HC_0) x + Hy + B_0 u$$
 (11)
故观测偏差可推导为:

$$\begin{cases} \dot{\tilde{x}} = (A_0 - HC_0)\tilde{x} \\ \tilde{x}(0) = x(0) - \hat{x}(0) \end{cases}$$
(12)

综上所述,观测偏差表达式为:

$$\tilde{x}(t) = e^{(A_0 - HC_0)t} \tilde{x}(0) \tag{13}$$

式(13)中观测器的误差收敛速度则是由 Ao- HC_0 决定,故可通过配置合适的反馈矩阵 H 极点, 使观测器具备足够快的动态性能。值得注意的是, 需要适当地选择状态观测器的截止频率,因为频带 太宽则会降低状态观测器的抗干扰能力,影响到 3L-NPCI 的稳定性;而频带太窄,则无法保证状态观 测器的动态性能。在实际工程上,根据经验一般将 截止频率设计为实际系统频率的 3~5 倍。状态观 测器的输入则是输出 AC 电压 V_{0} 和调制电压 V_{m} ,输 出则是预估电感电流 I_{l-est} 以及预估输出负载电流 I....,体现出 3L-NPCI 的闭环控制回路只需要一个 差分电压采样即可实现,可以达到逆变器降本增效 的目的。

3 整体闭环控制结构

在传统双闭环控制的基础上,将图 2 所示的电 流预估方法加入控制环路中,可以构建出如图 3 所 示的无电流传感器双闭环控制方法框图。通过采 样输出 AC 电压 V_0 和调制电压 V_m ,可以预估出电感 电流 I1 以及输出负载电流 I0。其中,预估电感电流 I_{l-est} 作为电流内环的负反馈;预估输出负载电流 I_{o-est} 作为电流内环的正反馈。

在如图 3 所示的 3L-NPCI 控制系统中,预估电 感电流 ILest 负反馈的作用是对电压外环的输出进行 补偿和校正,提高控制系统的带宽,加快系统的动

态响应速度;预估输出负载电流 I_{o-est} 前馈的作用则是增强 3L-NPCI 的抗负载干扰能力;输出电压前馈的作用则是为了消除输出电压和电流之间的耦合,提高动态性能,增强逆变系统的鲁棒性。

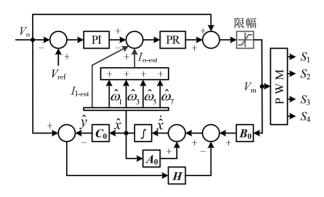


图 3 3L-NPCI 整体闭环控制框图

4 仿真测试验证及分析

为了验证所提电流预估方法的有效性和可行性,在仿真软件中搭建了 10 kW/220 V/50 Hz 的 3L-NPCI 仿真模型,其关键参数如表 1 所示,并根据 参数对 3L-NPCI 进行了空载/纯阻性负载、整流性负载以及负载动态切换的仿真测试。

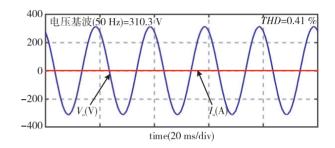
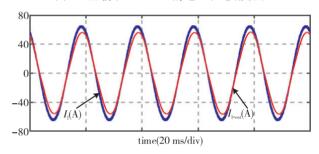
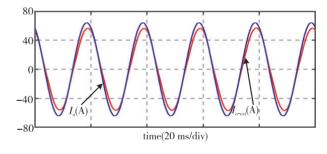
表 1 3L-NPCI 的关键参数

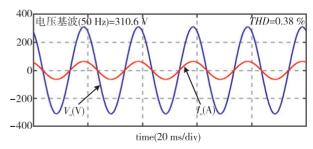
参数	符号	数值
输入 DC 电压(V)	$V_{\mathrm{de1}} = V_{\mathrm{de2}}$	400
开关频率(kHz)	$f_{ m s}$	10
电感/内阻(mH/Ω)	$L_{ m f}/r_{ m L}$	1.7/0.1
电容(μF)	$C_{ m f}$	30
整流性负载($\mu F/\Omega$)	$C_{ m r}/R_{ m r}$	1000/50
纯阻性负载(满载)(Ω)	R	4. 84
输出 AC 电压有效值/频率(V/Hz)	$V_{ m o}/f_{ m o}$	220/50
额定功率(kW)	$P_{\rm o}$	10

4.1 空载/纯阻性负载

图 4 所示为 3L-NPCI 空载情况下的电压和电流 波形,此时输出电流 I_o 为零,并测量输出电压 V_o 的谐波含量 THD 为 0. 41 %。图 5 所示为 3L-NPCI 满载情况下的关键波形,包括预估电感电流 I_{l-est} 、预估输出电流 I_{o-est} 、输出电压 V_o 和输出电流 I_o 波形。由图 5(a)和(b)可以看出所提基于状态观测器的电流预估方法能准确地预估出电感电流以及输出电流,而且预估的电感电流 I_{l-est} 和输出电流 I_{o-est} 在空载或满载时与实际测量的电感电流 I_1 和输出电流 I_o

基本保持一致,并且输出电压 V_0 的谐波含量 THD 为 0.38%。此外,在空载以及满载情况下,3L-NPCI 的输出电压周期为 20 ms(即频率为 50 Hz)、基波幅值分别为 310.3 V 和 310.6 V,表明 3L-NPCI 具备良好的稳态性能。基于此,根据图 4 和图 5 可以反映出 3L-NPCI 在所提电流预估控制方法的作用下具备良好的空载/带载运行能力以及电能质量。


图 4 空载下 3L-NPCI 的电压和电流波形

(a) 电感电流和预估电感电流波形

(b)输出电流和预估输出电流波形

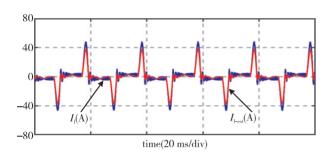
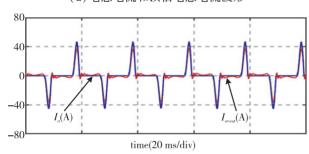
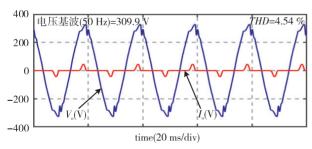

(c)电压和电流波形

图 5 满载下 3L-NPCI 的关键波形


4.2 整流性负载

为了凸显 3L-NPCI 在所提电流预估控制方法


下具备带整流性负载能力,图 6 所示为逆变器在整流性负载情况下的关键波形,同样包括预估电感电流 $I_{\text{o-est}}$ 、输出电压 V_{o} 和输出电流 $I_{\text{o-est}}$ 、输出电压 V_{o} 和输出电流 I_{o} 被形。由图 G(a) 和G(b) 可知,在控制方法的作用下,逆变器预估电感电流和输出电流与实际电感电流和输出电流高度拟合,体现出所提控制方法的有效性。此外,从图 G(c) 可知 G(c)

(a) 电感电流和预估电感电流波形

(b)输出电流和预估输出电流波形

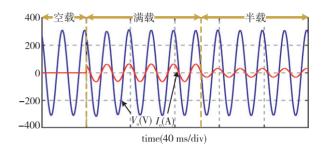

(c)电压和电流波形

图 6 整流性负载下 3L-NPCI 的关键波形

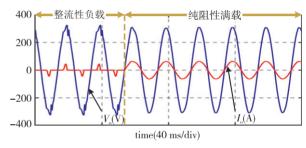
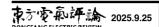

4.3 动态性能

图 7 所示为负载动态切换时 3L-NPCI 的电压和电流波形,包括纯阻性负载之间的切换、纯阻性负载与整流性负载之间的切换。图 7(a) 所示为空载、满载和半载之间切换的电压和电流动态波形,由图可发现在一个工作周期内 3L-NPCI 即可完成动态

切换并维持稳态;图 7(b)所示为纯阻性负载与整流性负载之间切换的动态波形,同样仅需一个工作周期逆变器即可完成动态切换并维持稳态。基于上述分析,表明 3L-NPCI 在所提基于状态观测器的电流预估方法作用下,具备快速的动态响应速度。

(a)空载→满载→半载

(b)整流性负载→纯阻性满载


图 7 负载动态切换时 3L-NPCI 的电压和电流波形

5 结语

本文提出了一种基于状态观测器的 3L-NPCI 无电流传感器闭环控制方法,依次介绍了 3L-NPCI 的拓扑结构、数学模型、所提电流预估方法、整体闭 环控制以及仿真测试结果。最后,大量的仿真测试 结果和分析表明所提基于状态观测器的电流预估 控制方法可以有效地减少电流传感器的使用,不仅 具有电感电流和负载电流预估能力,还具备空载或 者整流性负载运行的能力,同样确保了离网型 3L-NPCI 具有良好的电能质量以及动静态输出电压跟 踪性能,为高功率密度和低成本的逆变器开发提供 了一个新思路。

参考文献:

- [1] 陈建国,肖文静,王多平,等. 基于 RTDS 的高压大容量双向变流器控制硬件在环仿真研究[J]. 东方电气评论,2024,38(5):75-78
- [2] 张艳肖,李守智,赵学喜,等. 三相四线制 APF 在电动车充电站

- 中的应用研究[J]. 电子设计工程,2018,26(13):154-158
- [3] 林新春,刘方锐,张宇,等. UPS 中三电平逆变器分析与设计 [J]. 电力电子技术,2007(9):39-40+88
- [4] 闻一鸣,肖岚,郑美利亚,等.二极管箝位型三电平逆变器的控制方式研究[J].电力电子技术,2019,53(4):125-128
- [5] Chen C L, Wang Y, Lai J S, et al. Design of Parallel Inverters for Smooth Mode Transfer Microgrid Applications [J]. IEEE Transactions on Power Electronics, 2010, 25(1):6-15
- [6] 罗晓雪,易灵芝,刘珊,等.降阶原理在光伏 NPC 型逆变微网中的应用研究[J].电源技术,2015,39(11):2520-2523
- [7] Cheng L, Qiu L, Wu W, et al. Virtual Voltage Vector-Based Sequential Model-Free Predictive Control for Multiparalleled NPC Inverters[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2023, 11(3):3108-3116
- [8] Zhang Z, Zhu Z, Hu B, et al. Uniform Carrier-Based PWM Method for Three-Phase Three-Level Three-Wire and Four-Wire Converter

- System With Neutral-Point Balancing [J]. IET Power Electronic, 2020,13(14):3081-3089
- [9] Wei X, Wang H, Luo A, et al. Robust Multilayer Model Predictive Control for a Cascaded Full-Bridge NPC Class-D Amplifier With Low Complexity[J]. IEEE Transactions on Industrial Electronics, 2021,68(4):3390-3401
- [10] Su M, Cheng B, Sun Y, et al. Single-Sensor Control of LCL-Filtered Grid-Connected Inverters [J]. IEEE Access, 2019, 7:38481-38494
- [11] Liu T, Chen A, Wang W, et al. An Improved Model Predictive Control to Enhance Voltage Performance for LC Filtered Three-Level Inverters With Voltage Feedback Only [J]. IEEE Transactions on Industrial Informatics, 2023, 19(9):9809-9820
- [12] Fu C, Zhang C, Zhang G, et al. Current Sensorless Sliding-Mode Voltage Control for LC Filtered Three-Level T-Type Inverters [J]. IEEE Transactions on Circuits and Systems II; Express Briefs, 2024,71(4):2264-2268

新型固化工艺下绝缘漆膜的多因子绝缘 老化特性研究

唐婷¹ 邱绍升¹ 王延明² 胡波² 卞小琼¹ 李愿杰¹ 李山萍² 梁文蓉² 刘虹邑^{1*} 郑艳灵^{1*}

1. 东方电气(福建)创新研究院有限公司,福州 350108; 2. 东方电气集团东方电机有限公司,四川 德阳 618000

摘要:红外固化作为一种新型固化方式,具有能耗低、效率高、传热系数高、产品受热均匀、最终产品质量优异、过程参数易于控制、环境友好等优点,非常适合用于加热固化以薄片形式存在的物料(如漆膜、粘合剂等)。但目前红外固化对绝缘漆膜老化特性的影响还未进行深入的研究,因此本文分别选择红外固化与常温固化工艺下的三种绝缘漆膜进行老化实验,对比了不同老化因子与固化工艺对绝缘漆膜的影响。研究表明红外固化漆膜的抗老化能力较常温固化漆膜更佳。本研究为红外固化的大规模工业化应用提供了理论基础。

关键词:红外固化;发电机;绝缘材料;老化

中图分类号:TM21 文献标识码:A 文章编号:1001-9006(2025)05-0008-08

Research on the Multi-factor Insulation Aging Characteristics of Insulating Paint Films under New Curing Processes

TANG Ting¹, QIU Shaosheng¹, WANG Yanming², HU Bo², BIAN Xiaoqiong¹, LI Yuanjie¹, LI Shanping², LIANG Wenrong², LIU Hongyi^{1*}, ZHENG Yanling^{1*}

(1. Dongfang Electric (Fujian) Innovation Institute Co., Ltd., 350108, Fuzhou, China;

2. Dongfang Electric Machinery Co., Ltd., 618000, Deyang, Sichuan, China)

Abstract: Infrared curing, as a novel method, offers the advantages of low energy consumption, high efficiency, high heat transfer coefficient, uniform heating of the product, excellent quality of the final product, easy control of process parameters, and environmental friendliness. It is particularly suitable for heating and curing materials in thin sheet form (such as paint film and adhesive). However, the impact of infrared curing on the aging characteristics of insulating paint film has not been thoroughly investigated to date. Therefore, in this paper, three kinds of insulating paint films under infrared curing and room temperature curing processes were selected for aging experiments, and the effects of different aging factors and curing processes on insulating paint films were compared. The results indicate the anti-aging capability of infrared-curing paint films surpasses that of those cured at room temperatures. This research provides a theoretical foundation for widespread industrial application of infrared curing.

Key words: infrared curing; generator; insulating material; aging

发电机定子线棒的绝缘老化是缩短发电机寿命的主要原因之一,在发电机长期运行过程中,单

因素或多因素联合老化导致发电机定子线棒绝缘 材料发生结构变化、高分子裂解,造成绝缘失效,最

收稿日期:2024-12-12

作者简介: 唐婷(1997—), 女, 2023 年毕业于天津理工大学化学化工学院, 硕士, 工程师。现在东方电气(福建)创新研究院有限公司主要从事 材料开发工作

郑艳灵(1998一),女,中科院物构所与福建师范大学联合培养研究生,硕士,工程师。现任东方电气福建创新研究院有限公司研发工程师,主要从事材料开发工作。

刘虹邑(1983一),男,2009 年毕业于北京大学物理电子学专业,硕士,工程师。现在东方电气集团科学技术研究院主要从事材料研发工作。

终导致发电机停机^[1-5]。随着发电机的大型化发展,大型发电机定子线棒在实际运行过程中同时承受高电压、大电流,这对发电机绝缘材料的抗老化性能提出了更大的挑战^[6,7]。

定子线棒通常使用绝缘漆进行绝缘处理,涂刷绝缘漆是绝缘系统的最后一道工序,通过使用防晕漆和红瓷漆对线棒的不同部位进行多道涂刷,固化后对发电机定子线棒端部防电晕起到至关重要的作用。目前常使用的是常温固化的方式进行绝缘漆干燥,但干燥周期较长,多道涂刷耗费大量的固化时间.严重影响生产效率^[8,9]。

红外固化技术因其具有高的穿透深度和低的 光散射,被认为是一种极具潜力的新型固化工艺。 与传统固化方式相比,红外固化是通过红外光辐射 从内部加速物料分子的运动,传热速率快、能耗小、 设备的构造相对简便,有利于缩短物料固化时间, 提升物料固化效率及最终产品品质,已有相关研究 将红外固化技术应用在漆膜固化领域[10,11]。但是 目前红外固化技术对漆膜的老化影响尚未有研究, 而这也影响红外固化技术在漆膜固化领域的大规 模推广。

本项工作采用红外固化绝缘漆膜,进一步探究 多因素老化对漆膜绝缘性能的影响,为红外光辐射 在漆膜固化领域的大规模推广提供参考。

1 试验

1.1 主要原材料

防晕漆:低阻漆(DECJ1344)、高阻漆(DECJ1345):自制;红瓷漆(DECJ1348):自制;环氧层压玻璃布板(9320):扬州市拓腾电气有限公司,溴化钾(KBr,P116270):上海阿拉丁生化科技股份有限公司。

1.2 仪器设备

涂布器: ZBQ 四面制备器,普申检测仪器(上海)有限公司;碳化硅红外辐射板: JQ-200 * 300 mm, 兴化市骏辉电热电器厂; 电晕老化平台: Dx8427A,东莞市大显自动化仪器设备有限公司; 温湿度老化箱: BYTH450C, 比艾克莱检测技术有限公司;循环腐蚀盐雾箱: Q-FOG CRH600, 美国 Q-LAB公司; 热老化试验箱: 401A, 上海精密仪器仪表有限公司; 傅里叶变换红外(FTIR)光谱仪: Vector 22, 德

国 Bruker 仪器公司;表面体积电阻率测试仪: ZST-121,北京中航时代仪器公司;场发射扫描电子显微镜(SEM); Quanta FEG-250,美国 FEI 公司。

1.3 样品制备

使用涂布器在环氧层压玻璃布板涂刷 50 μm 的绝缘漆,使用红外固化方式,分别制备低阻防晕漆、高阻防晕漆以及红瓷漆三种红外固化样品,此外制备三类绝缘漆的常温固化样品作为对照组。

1.4 老化试验方案

电晕老化测试:使用针-板电极电晕老化平台, 针尖距地电极的距离可调节,将试样放置在板电极 上,针尖距离样品为 10 mm,接好高低压电极,保持 试验腔内空气流通,电晕老化电压为 6 kV。

热氧老化测试:根据 GB/T 11026. 1—2016《电气绝缘材料 耐热性 第1部分:老化程序和试验结果的评定》的规定进行试验,由于定子线棒运行温度在 180 ℃左右,因此分别测试绝缘漆膜在 180 $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ 200 $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ 0 $^{\circ}$ $^{$

温湿度循环老化:根据标准 GB/T 2423.34—2012《环境试验 第 2 部分:试验方法 试验 Z/AD:温度/湿度组合循环试验》规定,使用温湿度试验箱进行 10 次温度/湿度循环实验,每次循环为 24 h,在最后一组循环结束后,样品在标准大气条件下保持24 h 后进行最后的检测。

中性盐雾老化:根据 GB/T 10125—2012《人造气氛腐蚀试验 盐雾试验》规定,使用循环腐蚀盐雾箱进行测试,循环腐蚀盐雾箱温度为(35±2)℃,用蒸馏水配制氯化钠溶液,pH 在 6.5-7.2 之间,质量浓度为(50±5)g/L,实验样板符合 GB/T 9271—2008 规定,采用连续喷雾方法对样品进行不断老化。

1.5 测试与分析

1.5.1 FTIR 光谱测试

用刀片刮下试样表面的粉末涂层,干燥后与适量的分析纯 KBr 混合研磨压片,制样后进行 FTIR 光谱测试。

1.5.2 表面电阻率测试

根据 GB/T 1410—2006《固体绝缘材料体积电阻率和表面电阻率试验方法》,采用表面体积电阻率测试仪进行测试,每个试样测试 3 个点,以其平均值为表面电阻率。

1.5.3 微观形貌分析

使用 SEM 观察样品表面的微观形貌,分析样品 的老化特性,具体的,样品在经 30 s 喷金之后,在 1000×的放大倍数下观察。

2 结果与讨论

2.1 FTIR 光谱

(1)电晕老化

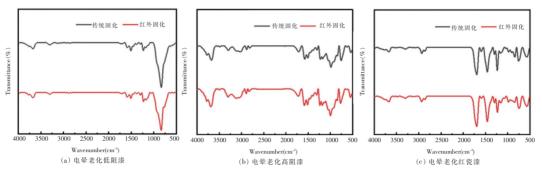


图 1 传统和红外固化方式的防晕漆和红瓷漆在电晕老化条件下的 FTIR 光谱对比图

(2)热氧老化

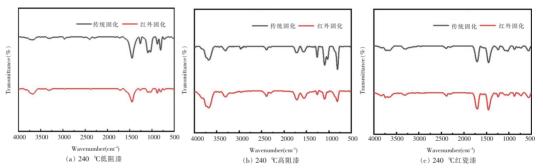


图 2 传统和红外固化方式的防晕漆和红瓷漆在热氧老化条件下的 FTIR 光谱对比图

(3)温湿循环老化

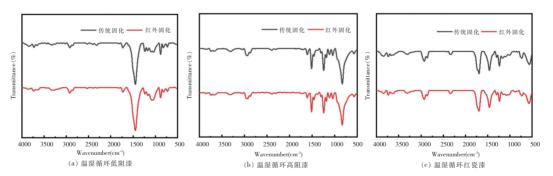


图 3 传统和红外固化方式的防晕漆和红瓷漆在温湿循环老化下的 FTIR 光谱对比图

(4)中性盐雾老化

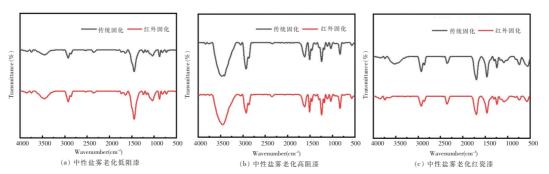


图 4 传统和红外固化方式的防晕漆和红瓷漆在中性盐雾老化下的 FTIR 光谱对比图

如图 1-4 所示,通过 FTIR 光谱观察传统固化和 红外固化样品的吸收峰,3 种漆膜主要的组成成分 都是环氧树脂(占主要成分)、二甲苯、醇类物质以及各种无机填料。3 630 cm⁻¹ 附近的吸收峰为-OH 伸缩振动吸收峰;2 960 cm⁻¹ 和 2 860 cm⁻¹ 处的吸收峰为-CH₃ 伸缩振动吸收峰;1 750 cm⁻¹ 附近的吸收峰为环氧树脂内 C = O 基团特征峰;苯环对应 1 604 cm⁻¹ 和 1 510 cm⁻¹ 处的吸收峰,苯环对位取代对应 831~835 cm⁻¹ 处的吸收峰,Si-O 基团对应 998 cm⁻¹ 处的吸收峰。三种漆膜中都存在 2 335~2 360 cm⁻¹ 附近的吸收峰为累积双键伸缩振动区的

吸收峰(O=C=O),这是由于空气中二氧化碳吸收 所造成的。

从定性的角度分析,不同固化方式的防晕漆和红瓷漆在四种老化条件后,漆膜样品的官能团仍然存在且吸收峰位置相近,老化后分子组成成分中均含有羟基、甲基或亚甲基、环氧基等。固化方式不同的样品经过不同的老化测试后,相应的 FTIR 光谱图并没有发生变化,因此可以推断固化方式的不同不会影响样品老化后的最终组分。

2.2 表面电阻率

(1)热氧老化

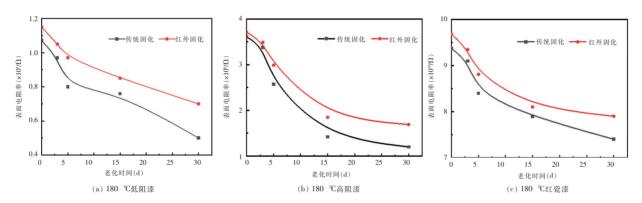


图 5 防晕漆和红瓷漆在老化条件为 180 ℃下的表面电阻率拟合曲线图

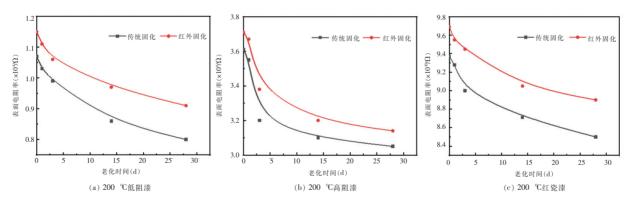


图 6 防晕漆和红瓷漆在老化条件为 200 ℃下的表面电阻率拟合曲线图

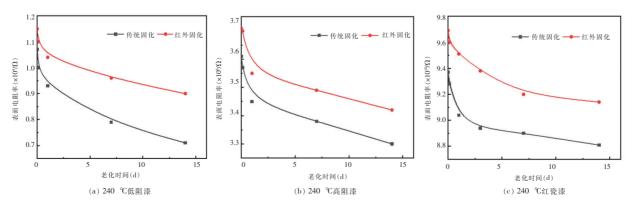


图 7 防晕漆和红瓷漆在老化条件为 240 ℃下的表面电阻率拟合曲线图

如图 5-7 所示,通过表面电阻率测试结果可得,防晕漆和红瓷漆在经过不同温度、时间的热氧老化条件后,表面电阻率数值呈下降趋势,递减速率先增大后减小。这归因于热氧老化会加速漆层中的氧化反应,高温和氧气的作用会导致漆层中的有机材料降解,生成导电性的氧化物或其他化学物质;氧化反应还会导致漆层的交联结构破坏,使得漆层的绝缘性能下降,从而降低表面电阻率。在 240 ℃ 老化条件下拟合曲线变化尤为明显,说明了温度越高氧化反应越剧烈,漆膜的损失率越大。

与红外固化方式相比,传统固化方式漆膜表面 电阻率下降速率更快。红外固化原理是与物料产 生一定程度的共振及振动,导致分子间摩擦加剧并 在物料表面和内层产生快速而均匀的内部加热。这种内部热量的产生会快速而均匀的提高材料的温度,引起漆料中树脂与固化剂快速均匀的固化反应。因此红外固化漆膜的固化程度更高,分子链结合紧密,在热氧老化中更不容易发生分解和破坏,有利于保持更佳的表面电阻率。

(2)其他老化

电晕老化、温湿度循环老化、中性盐雾老化后 样品的电阻率数据如表 1 所示。对比未老化样品与 不同老化样品的表面电阻率可以看出不论是传统 固化还是红外固化的防晕漆和红瓷漆在经过电晕 老化、温湿度循环老化以及中性盐雾老化后,表面 电阻率均有一定程度的下降。

		= = . =		
老化方式	固化方式	低阻漆(Ω)	高阻漆(Ω)	红瓷漆 (Ω)
+ +//.	传统固化	10. 70×10 ³	3. 61×10 ⁶	9.37×10 ¹⁰
未老化	红外固化	11.50×10^3	3.71×10^6	9.69×10^{10}
	传统固化	7.90×10^3	0.21×10^6	2.50×10 ¹⁰
电晕老化	红外固化	8.12×10^3	0.24×10^6	2.80×10 ¹⁰
	传统固化	6.71×10^3	2. 70×10 ⁶	5. 10×10 ¹⁰
温湿循环老化	红外固化	12.90×10^3	3.10×10^6	5. 65×10 ¹⁰
中性盐雾老化	传统固化	9.50×10^3	2.85×10^6	5.50×10 ¹⁰
	红外固化	10.60×10^3	3.07×10^6	6. 10×10 ¹⁰

表 1 其他老化条件下样品表面电阻率数值

对于电晕老化,电晕放电会导致漆层中有机物的裂解和氧化,产生自由基和过氧化物,这些副产物会破坏漆层的绝缘性能,导致表面电阻率降低^[12]。对于温湿度和盐雾老化,高温和盐雾会加速漆层中的有机物降解,同时高湿度会导致漆层吸水,水分的渗入和有机物的降解会破坏漆层的绝缘结构,使得表面电阻率降低。

从数据中可以看出,红外固化和传统固化的样品在老化前后的表面电阻率具有一定差距,红外固化样品在老化后的表面电阻率基本大于传统固化样品。这同样归因于红外固化样品具有更高的固化度,使红外固化样品在各种老化条件下可以保持更好的表面电阻率。

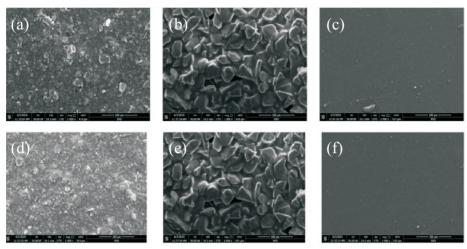
2.3 SEM

(1)未老化样品

如图 8 所示,传统固化工艺和红外固化工艺的低阻漆、高阻漆、红瓷漆三种漆膜都存在分子团聚的现象,主要是由于绝缘漆中存在相对较多

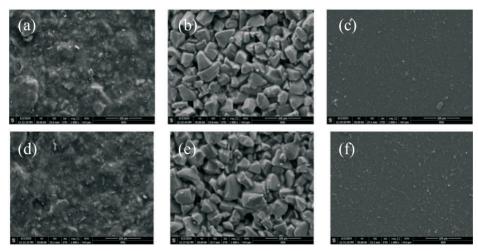
的细颗粒填料,然而分布相对较为均匀,平整光滑。

(2)电晕老化


如图 9 所示,与未老化样品 SEM 图对比,在电晕老化后,传统固化和红外固化的低阻漆、高阻漆、红瓷漆形貌未发生明显变化。

(3)240 ℃下热氧老化

如图 10 所示,与未老化样品 SEM 图对比,热氧老化后绝缘漆漆膜表面明显开裂,传统固化和红外固化的防晕漆和红瓷漆的漆膜均发生了明显的降解,这是因为 240 ℃下环氧树脂中的化学键开始断裂,树脂开始降解,导致填料之间的粘结降低,三种漆膜都出现不同程度的降解,可见热氧老化是影响漆膜形貌的重要因素。


(4)温湿循环老化

如图 11 所示,与未老化样品 SEM 图对比,在温湿循环老化下,传统固化和红外固化的防晕漆和红瓷漆的漆膜表面形貌未发生明显变化。

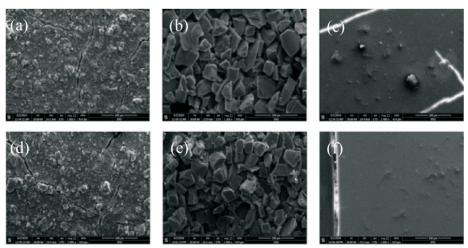

注:(a)~(c)为传统固化方式、(d)~(f)为红外固化方式;从左到右依次为低阻漆、高阻漆以及红 瓷漆。

图 8 不同固化方式下的防晕漆和红瓷漆的 SEM 对比图

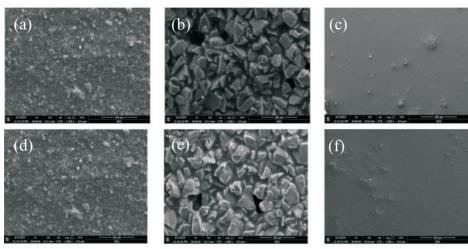

注:(a)~(c)为传统固化方式、(d)~(f)为红外固化方式;从左到右依次为低阻漆、高阻漆以及红 瓷漆。

图 9 不同固化方式下的防晕漆和红瓷漆在电晕老化条件下的 SEM 对比图

注:(a)~(c)为传统固化方式、(d)~(f)为红外固化方式;从左到右依次为低阻漆、高阻漆以及红 瓷漆。

图 10 不同固化方式下的防晕漆和红瓷漆在 240℃ 下热氧老化条件下的 SEM 对比图

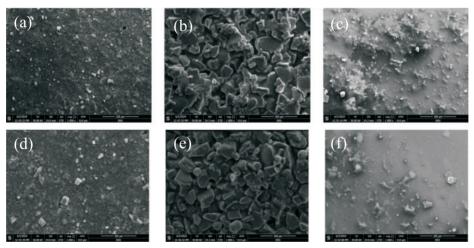

注:(a)~(c)为传统固化方式、(d)~(f)为红外固化方式;从左到右依次为低阻漆、高阻漆以及红瓷漆。

图 11 不同固化方式下的防晕漆和红瓷漆在温湿循环老化条件下的 SEM 对比图

(5)中性盐雾老化

如图 12 所示,与未老化样品的 SEM 图对比,在中性盐雾老化下,可观察到传统固化和红外固化的防晕漆和红瓷漆的漆膜表面存在白色颗粒,推测产生的原因可能是实验环境中所积累的盐分所导致。

通过对比可知,传统固化工艺下的漆膜盐分积累的 更多,且形貌破坏更为严重。这可能是因为使用红 外固化,漆膜表面固化完全,形成的漆膜表面更为 致密导致的。

注:(a)~(c)为传统固化方式、(d)~(f)为红外固化方式;从左到右依次为低阻漆、高阻漆以及红瓷漆。

图 12 不同固化方式下的防晕漆和红瓷漆在中性盐雾老化条件下的 SEM 对比图

综上所述,通过分析不同老化方式和不同固化 方式下防晕漆和红瓷漆的表面形貌可知,热氧老化 是影响漆膜形貌的重要因素。此外,对比两种固化 方法在各项老化条件下的表面形貌,在电晕老化、 热氧老化、温湿循环老化条件下,两种固化方式漆 膜的表面形貌相近,没有明显区别;在中性盐雾老 化条件下,传统固化漆膜形貌破坏更为严重,这可 归因于红外固化的传热均匀性,使固化过程平缓, 漆膜固化后表面更加致密,防止了盐雾颗粒的侵蚀。

3 总结

发电机定子线棒的绝缘系统对发电机的运行 寿命和稳定性具有重大影响,探究不同固化条件下 绝缘系统的耐老化性能具有重要意义。本文对比

京方電氣評論 2025.9.25

了在多种老化条件下新型固化方式和传统固化方式对绝缘漆膜性能的影响,从 FTIR 光谱、表面电阻率和 SEM 测试结果看出,不同的固化方式不会影响样品老化后的最终组成成分;在相同老化条件下,新型固化工艺下漆膜的抗老化性能优于传统固化漆膜。因此在发电机定子线棒的绝缘漆膜的固化中,可以通过改进固化工艺进一步缩短漆膜的固化时间,提升发电机定子线棒生产效率,同时新型固化工艺可以增强绝缘漆膜的耐老化特性,有利于提升发电机定子线棒寿命,以适应更加恶劣的环境。

参考文献:

- [1] 张晨曦,金海云,丁昌昊,等.多因子老化对抽水蓄能发电电动 机定子线棒主绝缘介电性能的影响[J].绝缘材料,2019,52 (10);52-58
- [2] Sumislawska M, Gyftakis K N, Kavanagh D F, et al. The impact of thermal degradation on properties of electrical machine winding insulation material [J]. IEEE Transactions on Industry Applications, 2016, 52(4); 2951-2960
- [3] Peng X, Jia Z D, Gao S Q, et al. Study on stator winding degradation under bar vibration [C]//2009 IEEE Conference on Electrical Insulation and Dielectric Phenomena, 2009:100-103

- [4] 李育林,刘向东,韩佳轩,等.基于电学性能的发电机线棒主绝缘热老化特性研究[J].绝缘材料,2023,56(8):45-50
- [5] 彭浣钦,冉启鼎,刘雁,等. 大型海上风力发电机主绝缘材料高 频电老化特性研究[J]. 东方电气评论,2023,37(4):8-12
- [6] 聂靓靓,刘向东,王韦玉,等. 抽水蓄能发电机定子线棒主绝缘 热老化特性研究[J]. 绝缘材料,2023,56(10):59-65
- [7] Panagiotou P A, Stone E J W, Mühlthaler J, et al. Thermal degradation profile of concentrated stator winding insulation by impedance spectroscopy [C]//2023 IEEE 14th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED),2023:554-560
- [8] 王立军,金雯静,傅斌. 22kV 汽轮发电机整浸定子线棒应用研究[J]. 绝缘材料,2020,53(10):69-74
- [9] Feng Y, Song Y M, Yue D, et al. Enhanced thermal conductivity and insulation properties of mica tape with BN-coated Meyer bar technology [C]//2024 IEEE 7th International Electrical and Energy Conference (CIEEC) ,2024;904-909
- [10] Genty S, Tingaut P, Tendero C, et al. Effects of infrared radiation on the mechanical properties of an epoxy-amine adhesive using a Central Composite Design method [J]. International Journal of Adhesion and Adhesives, 2022, 112:102990
- [11] Wang Y W, Liu K B, Li F F, et al. Infrared laser heating of GFRP bars and finite element temperature field simulation [J]. Journal of Materials Research and Technology, 2022, 18:3311-3318
- [12] 韩建波,王吉生,王晓宇. 大型水泵电机定子线棒电晕现象的分析与处理[J]. 水电站机电技术,2023,46(1):55-57

风冷燃料电池结构与运行工况多目标优化

孔红兵1,2 刘煜1,2 胡军1,2 朱鼎1,2

1. 东方电气(成都)氢能科技有限公司,成都 611731; 2. 氢电转换四川省重点实验室,成都 611731

摘要: 风冷燃料电池性能电堆流道结构尺寸及运行工况等多参数对燃料电池性能产生综合影响。本文构建了结合集成学习模型与遗传算法的多目标优化模型,针对风冷燃料电池的三个性能指标: 电流密度、质量功率密度和阴极催化层氧浓度匀性进行优化。通过采用训练完成的集成学习模型作为遗传算法中计算适应度值的代理模型并进行多目标优化,得到三目标优化 Pareto 解,并选择典型参考点,通过数值模拟的方法求得数值模拟解,对两者的优化结果进行对比分析。结果显示: 构建的结合集成学习模型与遗传算法的多目标优化模型具有较好的预测性与准确性,可作为风冷燃料电池电堆的设计与优化指导开发工具。

关键词:风冷燃料电池:结构参数:运行工况

中图分类号:TM911.4 文献标识码:A

文章编号:1001-9006(2025)05-0016-06

Multi-objective Optimization of Flow Channel Structure and Operating Conditions for Air-cooled Fuel Cells

KONG Hongbing^{1,2}, LIU Yu^{1,2}, HU Jun^{1,2}, ZHU Ding^{1,2}

(1. Dongfang Electric (Chengdu) Hydrogen Technology Co., Ltd., 611731, Chengdu, China;

2. Hydrogen Electricity Interconversion Key Laboratory of Sichuan Province, 611731, Chengdu, China)

Abstract: The performance of air-cooled fuel cells is comprehensively affected by multiple parameters such as the size of the fuel cell flow channel structure and operating conditions. This article constructs a multi-objective optimization model combining ensemble learning model and genetic algorithm to optimize three performance indicators of air-cooled fuel cells: current density, mass power density, and cathode catalytic layer oxygen concentration uniformity. By using the trained ensemble learning model as a proxy model for calculating fitness values in genetic algorithms and conducting multi-objective optimization, a three objective optimization Pareto solution is obtained. Typical reference points are selected and numerical simulation methods are used to obtain the numerical simulation solution. The optimization results of the two are compared and analyzed. The results show that the multi-objective optimization model constructed by combining ensemble learning model and genetic algorithm has good predictability and accuracy, and can be used as a design and optimization guidance development tool for air-cooled fuel cell stacks.

Key words: air-cooled fuel cells; structure parameters; operating conditions

燃料电池具有效率高、能量密度高、排放无污染等优点,已应用于交通领域与能源领域。燃料电池在工作过程中会产生热量,需要进行有效散热,才能维持燃料电池内部温度稳定在可运行区间。

目前燃料电池的冷却方式主要有水冷和风冷两种。 一般大功率燃料电池产热量较大,采用的是换热系数较大的水冷方式,而对于功率为1~2 kW的小功率燃料电池,采用风冷的方式就能够进行有效冷却。

收稿日期:2024-12-16

作者简介:孔红兵(1984—),男,2011年毕业于华中科技大学热能工程专业,工学硕士,高级工程师。现任职于东方电气(成都)氢能科技有限公司,主要从事燃料电池系统研发、工程应用等工作。

风冷燃料电池运行中,冷却风风源来自环境大气,因此环境温度、湿度以及气压变化直接影响风冷燃料电池运行特性,风冷燃料电池堆性能提升、轻量化设计以及运行特性对复杂环境变化的适应性是设计风冷燃料电池的关键技术。

Yang 等^[1]研究发现,电堆温度在不同的电流下对电池性能影响不同,在电流密度低于 0.5 A·cm⁻²时,较高的堆温会导致质子交换膜脱水,提高堆温会降低风冷燃料电池性能,当电流密度超出 0.6 A·cm⁻²时,增加堆温有利于水分蒸发,减少电池水淹问题,提升风冷燃料电池性能。Rosa 等^[2]在研究电堆温度、空气流速、氢气压力和空气流速对开放阴极燃料电池堆性能影响时发现,空气流速和电堆温度对电堆性能影响显著。通过研究温度对电堆性能影响发现,燃料电池在高环境温度下脱水导致欧姆损失的增加,电堆的功率密度随着堆温的增加而降低。

另外,双极板与扩散层是风冷燃料电池的两大核心部件,而其结构尺寸也严重影响风冷燃料电池的性能。双极板的流道布置形式与结构尺寸不仅影响散热,而且影响电池性能。Zhao等[3]认为肋槽宽度比的影响并非线性,通过优化,肋槽宽度比取0.7:1时,风冷燃料电池取得了较好的输出性能。Peng等[4]提出在气体通道中局部插入轻质多孔介质的通道设计方案以提升风冷燃料电池保水散热性能,通过数值模拟计算,发现与阴极气体通道直流道设计相比,电流密度可以提高18.2%。扩散层的如孔隙率、湿润角等特性会影响气体的扩散、传热及水传输。Wu等[5]通过实验研究了气体扩散层润湿性对风冷燃料电池性能的影响。

风冷燃料电池在设计过程中,需要兼顾性能与结构尺寸等多种需求,但满足不同性能需求的风冷燃料电池结构参数与工况参数不完全相同,甚至相互拟制因此,结合结构尺寸与运行参数,开展多目标性能优化,是设计一款性能优越的燃料电池的重要研究内容。本文结合方差分析、机器学习及非支配排序遗传算法(NSGA-II),构建了多目标优化模型,对风冷燃料电池进行电流密度、质量功率密度以及催化层氧浓度分布均匀性进行多目标优化,并得到优化解。

1 风冷燃料电池多目标优化

采用人工神经网络集成学习模型来训练遗传算法优化所需代理模型,集成学习模型构建风冷燃料机器学习预测模型的流程如图 1 所示。本文采用神经网络作为弱学习器针对风冷燃料电池电流密度、质量功率密度以及氧浓度均匀性来训练三个集成学习模型。为了获得基础数据集,筛选影响燃料电池性能的六个决策变量设计正交试验矩列,为了扩充数据集,该正交设计采用 6 因素 5 水平表,6 个因素设置的水平数如表 1 所示。

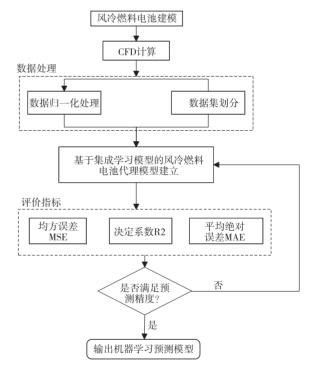


图 1 集成学习模型构建风冷燃料电池预测模型流程图

根据表 1 的 6 因素 5 水平表构建 L_{25} 正交设计实验表,并在表 2 中给出,在表 2 中,每一行仍对应着一个工况,对每个工况,均采用构建的三维多相非等温燃料电池模型计算 10 个工作电压下(0.4~0.85 V,间隔取 0.05 V)的仿真结果,以进一步扩充数据集的数据量。这样所构建的正交设计表,总共可以获得 250 个数据。这 250 个数据的 70 %用来作为训练集,15 %作为验证集,另外 15 %作为测试集,分别用于预测模型构建,模型的迭代优化以及预测性能的评估,隐藏层选择为 10 层。在进行机器

学习预测实施前,数据集中不同变量之间可能存在数量级差异,对其进行预处理有利于降低预测实施

过程中较大的误差,采用式(1)对数值模拟计算提供的原始数据进行无量纲化。

表 1	决策变量水平划分	
1X I	灰水又里小干刈 刀	

参数(符号)	单位	水平1	水平 2	水平 3	水平 4	水平 5
气体扩散层孔隙率 (ε)	_	0.6	0.65	0.7	0.75	0.8
气体扩散层润湿角 (θ)	٥	110	120	130	140	150
阴极肋宽(W_{r})	mm	0.8	1	1.2	1.4	1.6
环境压力(P)	atm	0.7	0.775	0.85	0.925	1
环境温度($T_{\rm in}$)	K	278. 15	288. 15	298. 15	308. 15	318. 15
阴极相对湿度 (RH_c)	_	0.1	0.3	0.5	0.7	0.9

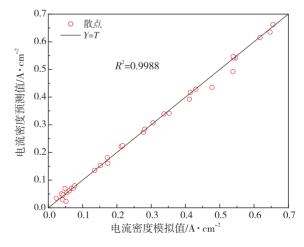
表 2 6 因素 5 水平 L... 正交设计表

	表 2	6 因素	₹5水平	L ₂₅ 正交i	设计表	
ı	_	θ	W_{r}	P	$T_{ m in}$	RH_c
L_{25}	ε	(°)	(mm)	(atm)	(K)	$\kappa n_{ m c}$
1	0.6	110	0.8	0.7	5	0. 1
2	0.6	120	1	0.775	15	0.3
3	0.6	130	1.2	0.8	25	0.5
4	0.6	140	1.4	0.925	35	0.7
5	0.6	150	1.6	1	45	0.9
6	0.65	110	1	0.8	35	0.9
7	0.65	120	1.2	0.925	45	0.1
8	0.65	130	1.4	1	5	0.3
9	0.65	140	1.6	0.7	15	0.5
10	0.65	150	0.8	0.775	25	0.7
11	0.7	110	1.2	1	15	0.7
12	0.7	120	1.4	0.7	25	0.9
13	0.7	130	1.6	0.775	35	0.1
14	0.7	140	0.8	0.8	45	0.3
15	0.7	150	1	0.925	5	0.5
16	0.75	110	1.4	0.775	45	0.5
17	0.75	120	1.6	0.8	5	0.7
18	0.75	130	0.8	0.925	15	0.9
19	0.75	140	1	1	25	0.1
20	0.75	150	1.2	0.7	35	0.3
21	0.8	110	1.6	0.925	25	0.3
22	0.8	120	0.8	1	35	0.5
23	0.8	130	1	0.7	45	0.7
24	0.8	140	1.2	0.775	5	0.9
25	0.8	150	1.4	0.8	15	0. 1

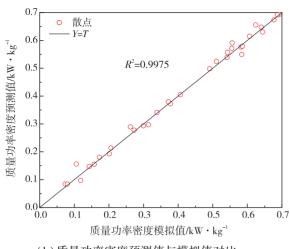
$$X_{\text{norm}} = \frac{X - X_{\text{min}}}{X_{\text{max}} - X_{\text{min}}} \tag{1}$$

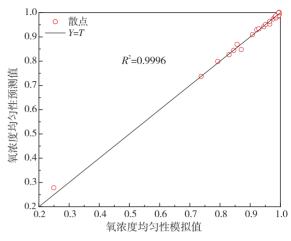
式中:X-数值模拟提供的原始数据。

在评估机器学习模型精度时,有多种评价指标,本文采用两个评价指标来评估该训练模型预测性能,即均方误差(MSE)和决定系数(R^2)。


$$MSE = \frac{1}{n} \sum_{i=1}^{n} (f_i - y_i)^2$$
 (2)

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - f_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y}_{i})^{2}}$$
(3)


式中: f_i 一预测值; y_i 一实际值;n—数据量; y_i 一实际值的平均值。MSE 越小, R^2 越接近于 1,预测模型的准确性越好。


图 2 给出了三个目标函数机器学习测试集的决定系数。从图中可以数值模拟值与预测值拟合度较好,对于三个目标函数的 R^2 分别为 0. 998 8、0. 997 5 和 0. 999 6。预测数据和模拟数据之间的高相关性展示了代理模型的准确预测性能。

此外,表 3 给出了机器学习训练、验证以及测试过程的均方误差与决定系数,测试集上的 *MSE* 值分别为 1.96×10⁻⁴、2.52×10⁻⁴ 和 5.99×10⁻⁵,表明模型具有良好的预测性能。因此,代理模型集成到优化算法中具有较高的精度。

(a)电流密度预测值与模拟值对比

(b)质量功率密度预测值与模拟值对比

(c)氧浓度均匀性预测值与模拟值对比

图 2 目标函数机器学习测试集决定系数

表 3 机器学习预测精度

	电流密度		质量功	质量功率密度		氧浓度均匀性	
	MSE	R^2	MSE	R^2	MSE	R^2	
训练	9. 79×10 ⁻⁶	0. 999 9	2. 45×10 ⁻⁴	0. 997 8	9. 58×10 ⁻⁶	0. 999 7	
验证	1.38×10 ⁻⁴	0.9990	2.54×10^{-4}	0.997 3	3.84×10^{-5}	0.9990	
测试	1.96×10 ⁻⁴	0.9988	2.52×10^{-4}	0.997 5	5.99×10^{-5}	0.998 6	

2 多目标优化算法与结果分析

多目标优化各行业已经开发出了大量的智能优化算法,且在工程优化过程中都得到了大量应用^[6,7]。本文多目标优化的主要目的是为了最大限度的提升风冷燃料电池电流密度、质量功率密度以及氧浓度分布均匀性,采用的多目标优化算法为非支配排序遗传算法(NSGA-II)。多目标优化问题可以用以下数学模型来描述。

$$\min[f_1(x), f_2(x), \dots f_n(x)]$$
s. t. $:lb_i \leq x_i \leq ub_i$ (4)

式中: x_i 一决策变量;n一决策变量数; lb_i 一变量下边界; ub_i 一变量上边界。

与常规算法不同的是本文引入上述的集成机器学习代理模型来代替 NSGA-II 的"计算适应度"步骤,以加快三目标优化过程。与单目标优化只获得一个最优解不同,多目标优化通常会获得一组称为 Pareto 前沿的最优点。在多个 Pareto 最优解的情况下,不同目标函数之间互相制约,所取得的最优解均是做出一定取舍后的权衡,因此,在未进行取舍之前,所有 Pareto 最优解都可以被认为是同等重

要的。图 3 给出了三目标优化后的 70 个 Pareto 解,这 70 个 Pareto 解对应着 70 个不同的风冷燃料电池 参数组合。

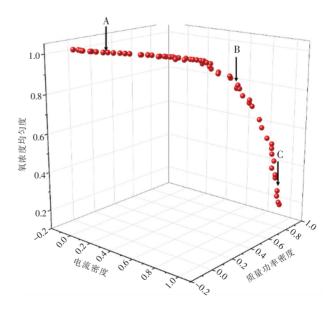
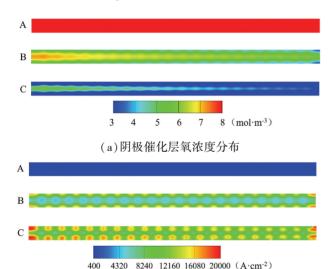


图 3 风冷燃料电池三目标优化 Pareto 解集


为了验证优化结果,选择三个代表点 A、B 与 C, 对其进行验证。点 A 和 C 靠近 Pareto 解集的两端, 而点 B 位于 Pareto 锋面的中间区域。表 4 给出了 A、 B 与 C 点的比较结果,并列出了相应的工作条件。从 表 4 可以看出,在 A、B、C 三个点中,A 点表现出了较好的氧浓度均匀性,相较于 B 点与 C 点,其氧浓度均匀性分别提高了 15.7 %与 180 %,然而其电流密度与质量功率密度却是三个点中最低的;C 点的电流密度与质量功率密度是三个点中最高的,相较于 B 点,其电流密度分别提高了约 40 %;对于 B 点,其电流密度、质量功率密度以及氧浓度均匀性在三个点中

表现处于 A 与 C 之间,相比较 C 点,以一定的性能下降,换取了较好的氧浓度均匀性,B 点及其附近的点可以认为是权衡电流密度、质量功率密度与氧浓度均匀性得到的最优解。然而,不存在一个点的所有三个指数都优于其他点的值的情况,可以得出结论,所有这些点都是 Pareto 非支配解,决策者可以根据需求选择其中的方案。

表 4 Pareto 解集对比

	工况								评价指标	
		θ	W_{r}	P	$T_{ m in}$	RH	RH_c $V_{ m cell}$		P_{M}	UCO ₂
	$oldsymbol{arepsilon}$	(°)	(mm)	(atm)	(K)	- III c		I	1 M	0002
A	0.64	113.07	1.08	0.986	24. 69	0.46	0.82	0.06	0.14	0. 996 3
В	0.66	120. 11	0.97	0.989	19. 19	0.52	0.44	0.95	1.13	0.8610
С	0.64	110.88	1.58	0.990	17.06	0.45	0.42	1.35	1.26	0.355 6

为进一步验证采用集成学习模型的多目标优化结果的合理性,本文进行了三目标工况的数值模拟计算并与三目标优化结果进行对比,对比结果如图 4 和表 5 所示。

(b) 阴极催化层电流密度分布

图 4 三目标优化参数对应数值模拟结果

图 4 给出了 A、B 与 C 点阴极催化层氧浓度与 电流密度分布特性,在图 4(a)可以看出 A 点由于采 用高电压以及宽通道设计,降低了氧气在催化层中的消耗,以及氧气在肋下的传输阻力,提升了催化层整体氧浓度,继而显著提升了风冷燃料电池催化层氧浓度分布均匀性,但是由于选择的操作电压过高,所以其电流密度较低。对于 C 点,阴极肋宽相应进行了增加,其次该工况运行操作电压较低,可以看出该点风冷燃料电池电流密度显著增加,该点电流密度与质量功率密度在选择的 A、B 与 C 点之间最高,但是宽肋以及电流密度的增加加剧了通道下与肋下的氧浓度差距,所以从图 4(a)中可以看出 C 点对应的氧浓度分布均匀性较差。对于 B 点,其氧浓度与电流密度在三个参考点中均处于中间水平,是对风冷燃料电池性能与催化层关键物理量分布均匀性做出权衡后的结果。

表 5 展示的三目标优化与数值模拟结果的相对偏差。从表 5 可以看出,对于 A 点其电流密度与质量功率密度偏差较大,这是因为此时 A 点选择的操作电压较高,电流密度绝对值较小,导致其相对偏差较大。对于其余数值,三目标优化与数值模拟结果偏差不大于 10 %,展示出较好的预测精度。

表 5 三目标优化解与数值模拟解对比

		三目标优化			数值模拟结果			相对偏差 %		
	I	P_{M}	UCO_2	I	P_{M}	UCO_2	I	P_{M}	UCO_2	
A	0.06	0. 14	0.996	0.08	0.13	0. 999	35.4	12. 96	0.33	
В	0.95	1. 13	0.861	0.95	1.08	0.860	0. 19	4.30	0.02	
С	1.35	1. 26	0.355	1.40	1.24	0. 352	4. 22	1.67	1.00	

京方電氣評論 2025.9.25

3 结语

本文基于一种集成学习多目标优化模型,同时优化风冷燃料电池的三个性能指标,即电流密度、质量功率密度和阴极催化层氧浓度匀性。首先,从燃料电池模型获得的数据,利用机器学习集成学习模型将其训练为代理模型。最后,将训练完成的代理模型与遗传算法集成,实现风冷燃料电池的多目标优化,主要有以下结论。

- (1)集成学习模型在测试集上显示出很高的预测精度。针对三个目标函数集成学习模型测试集的决定系数 R² 分别为 0.998 8、0.997 5 和 0.998 6,而均方误差 MSE 分别为 1.96×10⁻⁴、2.52×10⁻⁴ 和 5.99×10⁻⁵,表明了构建的集成学习模型对风冷燃料电池具有较好的预测性能,可以将其集成到 NSGA-II 中作为计算适应度值的代理模型。
- (2)通过多目标遗传算法 NSGA-II,得到了一组三目标优化 Pareto 解,并以在 Pareto 解集的锋面选择三个典型参考点,对其优化结果进行对比分析,处于 Pareto 解集锋面两端的点,其三个目标中的一个目标显著优于其他两个点,而处于 Pareto 锋面中间的参考点,以一定的性能下降,换取了较好的氧浓度均匀性,该点及其附近的点是权衡电流密度,质量功率密度与氧浓度均匀性得到的最优解。
- (3)通过基于物理模型和数学方程的数值模拟解与多目标遗传算法 NSGA-Ⅱ的优化解进行对比,两者数据误差较小,且表现出来的现象相同,说明

构建的结合集成学习模型与遗传算法的多目标优 化模型具有较好的合理性,为后续风冷电池堆的 设计与优化提供了一种更快捷、准确的指导开发 工具。

参考文献:

- [1] Yang Y, Jia H, Liu Z, et al. Overall and local effects of operating parameters on water management and performance of open-cathode PEM fuel cells[J]. Applied Energy, 2022, 315;118978
- [2] Santa Rosa D, Pinto D, Silva V S, et al. High performance PEMFC stack with open-cathode at ambient pressure and temperature conditions [J]. International Journal of Hydrogen Energy, 2007, 32 (17):4350-4357
- [3] Zhao C, Xing S, Chen M, et al. Optimal design of cathode flow channel for air-cooled PEMFC with open cathode [J]. International Journal of Hydrogen Energy, 2020, 45(35):17771-17781
- [4] Peng M, Chen L, Zhang R, et al. Improvement of thermal and water management of air-cooled polymer electrolyte membrane fuel cells by adding porous media into the cathode gas channel [J]. Electrochimica Acta, 2022, 412:140154
- [5] Wu B, Li B, Liu W, et al. The performance improvement of membrane and electrode assembly in open-cathode proton exchange membrane fuel cell[J]. International Journal of Hydrogen Energy, 2013,38(25):10978-10984
- [6] 王杰. 燃料电池混合电源多旋翼无人机轨迹规划与能量管理研究[D]. 吉林大学,2023
- [7] 何宋杰,吕学勤.基于混合深度神经网络的燃料电池混合动力 汽车能量管理优化研究[J].可再生能源,2024,42(8): 1127-1136

烟气湿法脱硫用石灰石反应速率测定 方法的研究及建立

陶玮彤^{1,2} 陈虹^{1,2} 马菊梅^{1,2} 王鑫^{1,2} 韦耿^{1,2}*

1. 能源清洁低碳热转化利用技术与装备四川省重点实验室,成都611731; 2. 东方电气集团东方锅炉股份有限公司,四川自贡643001

摘要:本研究针对国内湿法脱硫用石灰石粉反应速率的测定方法未形成统一的问题,基于电力行业标准 DL/T 943—2005 烟气湿法脱硫用石灰石粉反应速率的测定,对烟气湿法脱硫用石灰石粉反应速率测定方法进行了优化与完善。使用全自动电位滴定仪规范了滴定实验的测量系统校正方法、恒 pH 滴定方法、操作控制细节、操作顺序与步骤以及数据处理方法等。研究全自动电位滴定仪的最大加液速率对滴定实验结果的影响,结果表明选取最大加液速率为 1 mL/min 时滴定结果表现最佳。而后,使用建立与优化后的滴定实验方法对收集的不同地区的五种石灰石粉进行反应速率的测定与分析,结果表明五种石灰石粉的反应速率大小顺序为;SHS05>SHS04>SHS02>SHS01>SHS03。

关键词:石灰石:湿法脱硫:恒pH滴定:反应速率:测定方法

中图分类号:X773

文献标识码:A

文章编号:1001-9006(2025)05-0022-09

Research and Establishment of A Method for Determining the DissolutionRate of Limestone used in Wet Flue Gas Desulfurization

TAO Weitong ^{1,2}, CHEN Hong ^{1,2*}, MA Jumei ^{1,2}, WANG Xin ^{1,2}, WEI Geng ^{1,2}

(1. Clean Energy Low-Carbon Thermal Utilization Technology and

Equipment Key Laboratory of Sichuan Province, 611731, Chengdu, China;

2. Dongfang Boiler Co., Ltd., 643001, Zigong, Sichuan, China)

Abstract: This study aims to address the issue of the lack of a unified method for determining the dissolution rate of limestone powder used in wet flue gas desulfurization in China. Based on the power industry standard DL/T 943—2005 Measurement of dissolution rate of limestone powderused in wet flue gas desulfurization, the method for determining the dissolution rate of limestone powder used in wet flue gas desulfurization has been optimized and improved. This study used a fully automatic potentiometric titrator to improve the calibration of measurement system, the establishment of a constant pH titration method, the operation control details, the operation sequence and steps, and the data handling methods. Based on this experimental method, the influence of the maximum liquid addition rate of the fully automatic potentiometric titrator on the titration experiment results was studied. The results showed that the best titration performance was achieved when the maximum liquid addition rate was selected as 1 mL/min. Subsequently, the established and optimized titration experimental method was used to measure and analyze the dissolution rates of five types of limestone powders collected from different regions. The results showed that the order of dissolution rates for the five types of

收稿日期:2025-02-26

作者简介:陶玮彤(1996—),女,2021年毕业于大连理工大学应用化学专业,研究生学历,工程师。现任职于东方电气集团东方锅炉股份有限公司,主要从事清洁燃烧与烟气净化方向研究工作。

韦耿 (1983—),男,2010 年毕业于西安交通大学动力工程及工程热物理专业,博士在读,高级工程师。现任职于东方电气集团东方锅炉股份有限公司,主要从事清洁燃烧与烟气净化以及碳捕集方向研究工作。通信邮箱:weig@dbc.com.cn。

京方電氣評論 2025.9.25

limestone powders was: SHS05>SHS04>SHS02>SHS01>SHS03.

Key words: limestone; wet desulfurization; constant pH titration; dissolution rate; measurement method

石灰石/石膏湿法烟气脱硫工艺技术成熟,具有吸收剂资源丰富、价格低廉、脱硫效率高等优点,是目前控制酸雨和 SO₂ 污染最有效的手段^[1]。在湿法脱硫工艺中,石灰石作为关键吸收剂,其性质直接决定了二氧化硫的吸收效率。在实际工程应用中,测定石灰石的反应速率对于工艺流程的设计具有重要的指导意义,石灰石/石膏湿法脱硫系统中石灰石的反应速率制约着整个系统对二氧化硫的吸收速度,所以测定石灰石的反应速率至关重要^[2]。

目前,国内测定湿法脱硫用石灰石粉反应速率主要是基于恒 pH 滴定方法,即在恒定 pH 条件下进行滴定实验。但反应条件例如石灰石质量、盐酸浓度、pH 设定值、反应时间以及判别指标等并未形成一致^[1,34]。所以国内的研究表明,湿法脱硫用石灰石粉反应速率的测定方法均使用恒 pH 滴定,但测定条件并未形成统一。

电力行业标准 DL/T 943—2005《烟气湿法脱硫用石灰石粉反应速率的测定》提出了测定方法和滴定条件,其反应条件与实际工程相接近,判别指标对湿法烟气脱硫用石灰石活性的判断具有一定的指导意义^[5]。但是,该标准仅完成了实验方法、反应条件、数据处理的规定,没有对恒 pH 滴定的设定参数(包括恒滴定的 pH 控制区、最大加液速率等)进行优化控制,而且提出的湿法脱硫用石灰石粉反应速率的判别方法与实际结果有一定差距。如果仅按照 DL/T 943—2005 进行全过程的测定,当滴定程序的参数设定或者数据的选取方法不同时,将会造成同一个样品出现不同的测定结果,导致测定结果没有可对比性,进而影响工程设计。

针对上述问题,本实验研究以 DL/T 943—2005 的反应条件为基础,系统性优化湿法脱硫用石灰石 反应速率的测定方法。本研究对于湿法脱硫用石 灰石粉反应速率的测定提供统一参考标准,旨在能 推进国内形成系统性的测定方法,使得测定结果成 为可对比数据,进而提高工程设计效率。

本文通过全自动电位滴定仪对测量系统的校正、恒 pH 滴定的参数设定、滴定过程的细节控制以及数据处理进行规范。同时,研究最大滴定(加液)

速率对实验结果的影响,并优化实验设定参数,建立最优实验方法。而后,使用优化后的测定方法对收集的来自五种不同地区的石灰石粉进行反应速率的测定及结果分析。

1 反应速率测定方法的建立与优化

1.1 实验方法的建立

1.1.1 测定原理

在实际工程中,石灰石吸收 SO₂ 的过程是一个复杂的化学过程,在水中气相 SO₂ 被吸收,并经过一系列化学平衡反应后生成亚硫酸。反应初期,石灰石中的钙质与水反应生成氢氧化钙,氢氧化钙随后与二氧化硫反应生成亚硫酸钙。在氧化空气的作用下,亚硫酸钙进一步被氧化为硫酸钙,即石膏,并释放出水和二氧化碳^[6-8]。所以,湿法石灰石/石膏法烟气脱硫主要涉及石灰石溶解、SO₂ 吸收、中和以及亚硫酸钙氧化 4 个过程,总反应式为:

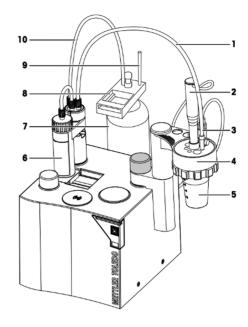
 $SO_2+CaCO_3+1/2O_2+2H_2O \rightarrow CaSO_4 \cdot 2H_2O+CO_2$

在工程应用中,石灰石/石膏法脱硫需要控制 其浆液 pH 值,一般 pH 值控制在 5.2~6.2。原因 是,pH 值影响 SO₂ 的吸收,亚硫酸钙的氧化,系统结 垢、腐蚀和碳酸钙表面钝化。pH 值高,有利于 SO₂ 的溶解和吸收,脱硫效率高;但 pH 值高,容易使 CaCO₃ 粒子表面钝化,抑制化学反应进行,不利于 CaCO₃ 的溶解和亚硫酸盐的氧化。所以本实验基于 DL/T 943—2005 设定石灰石悬浮液体系的 pH 值保 持在 5.5 进行滴定。

使用恒 pH 滴定的方法对石灰石粉与酸的反应速率进行测定,即在某一特定时段内保持体系 pH 值恒定。体系中生成或消耗的 H⁺可以通过 pH 电极来跟踪。这些生成或被消耗的 H⁺可以通过分别添加一定量的碱或酸来中和,由此来控制使 pH 值恒定。滴定剂的添加速率与被测样品的反应速率成正比。在实际操作过程中,参照 DL/T 943—2005提到的方法,用 250 mL 的 0.1 mol/L 的 CaCl₂ 溶液溶解 0.15 g 石灰石粉,维持温度为 50 $^{\circ}$ 0,通过向石灰石浆液中持续加入盐酸溶液来维持 pH = 5.5 不变,以石灰石粉中 80 %的碳酸盐与酸的反应时间

(tpH=5.5)作为该石灰石粉反应速率的判别指标。

1.1.2 实验仪器


全自动电位滴定仪是由德国梅特勒仪器有限公司生产的 DL50G 型号。全自动电位滴定仪结构如图 1 所示,该仪器主要由滴定系统、电子控制系统、滴定终点检测系统和数据处理系统四个部分组成。

玻璃仪器:500 mL 烧杯,500 mL 量筒。

其他仪器:水浴锅(温度误差为 ± 1 °C);电子天平(精确度为 0.001 g);温度计(精确度为 0.1 °C);筛网(250 目,满足国家标准 GB/T 6003.1—2022《试验筛 技术要求和检验 第 1 部分:金属丝编制网试验筛》)。

1.1.3 实验原料与试剂

实验原料:从电厂当地取来石灰石原样,选用过筛250目(筛余5%)的石灰石粉。本实验从巴西某地和贵州某地等地收集了五种石灰石,将这五种石灰石依次编号为SHS01、SHS02、SHS03、SHS04、SHS05(表1)。

注:1-馈液管;2-小型搅拌器;3-电极;4-滴定台;5-滴定容器;6-滴定管;7-滴定剂瓶;8-滴定管支架;9-馈液管支架;10-吸液管。

图 1 全自动电位滴定仪主要组成部分

表 1 SHS01-SHS05 对应的地区

编号	SHS01	SHS02	SHS03	SHS04	SHS05
地区	巴西某电厂	巴西某电厂	贵州某电厂	某电厂	某电厂
颜色	灰色	黄白色	浅褐色	褐色	灰色

实验试剂:本实验所用试剂均为分析纯试剂, 所用的水指蒸馏水或具有同等纯度的去离子水。 氯化钙溶液:浓度为 0.1 mol/L 的氯化钙(CaCl₂)溶液。滴定试剂: 0.1 mol/L 的盐酸(HCl) 标准滴定溶液。

1.1.4 石灰石成分分析

测定方法主要参考国家标准: GB/T14506.1~14506.28—93《硅酸盐岩石化学分析方法》。

1.1.5 测定方法的细化建立

(1)测量系统的校准

DL/T 943-2005 中提到"每次实验前宜采用接近控制点的标准值缓冲溶液校准电位滴定仪的值测量系统",但没有陈述具体的校正方法。本研究细化测量系统的校准步骤为:①准备 pH 值为 4.01和 6.86的 pH 缓冲溶液;②建立校准方法:动作选择"校正",选择缓冲溶液数量以及缓冲溶液对应的pH 值,测量模式选择"平衡控制模式",最小斜率输

入"90%",最大斜率输入"110%";③使用建立的校准方法进行校准实验(每次更换缓冲溶液之前均对电极、搅拌器进行清洗并擦干);④每个样品重复测定3次,测试每个样品之前,均对pH 计电极进行校准。

(2)恒 pH 滴定方法的建立

使用恒 pH 滴定方法,基于 DL/T 943—2005 的 反应条件,同时根据全自动电位滴定仪的说明书以 及多次实验。本研究提出恒 pH 滴定方法的建立主 要选择以下 7 个参数设定:①滴定方法的建立主 要选择以下 7 个参数设定:①滴定方法选择 "Stating"(恒滴定方法);②样品的质量设定为"0.15 g";③搅拌器转速设定为"21 %"(800 r/min);④滴定剂选择为"HCl",浓度为 0.1 mol/L;⑤预滴定的控制区设定为"1 pH";⑥恒滴定的设定电位为"5.5 pH",控制区设定为"0.2 pH",趋势选择"负向",加液速率(最大)输入"1 ml/min"(1.2 中提到最大加液速率的优化过程),加液速率(最

小)输入"1 μL/min";⑦终止设置:最大体积设定为 "20 mL",最大时间设定为"60 min"。

(3)pH 计电极、馈液管以及搅拌器的放置

本实验的仪器设备如图 2 所示。实验研究发现,pH 计电极、馈液管和搅拌器的放置位置对滴定实验结果的影响较大,一旦放置位置不合适将会使滴定实验的曲线出现"超调"现象或者直接中断实验。所以,本部分规范了 pH 计电极、馈液管以及搅拌器的放置位置(如图 3 所示):①pH 计电极应尽可能以最大接触面积浸入 CaCl₂ 溶液中;②pH 计电极与馈液管以对角位置放置(俯视方向);③馈液管底部的位置应在液位高度的居中位置(侧视方向);④搅拌器放置于烧杯的正中间(俯视方向)。

图 2 滴定实验仪器设备

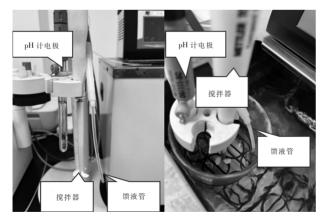


图 3 pH 计电极、馈液管和搅拌器的放置位置

(4)恒 pH 滴定

滴定实验按照建立的恒 pH 滴定方法逐步进行操作。DL/T 943—2005 仅仅提到"将 pH 计电极插入到石灰石悬浮液中,注意电极不要碰到搅拌桨,设定自动滴定仪 pH 值为 5.5,用 0.1 mol/L 盐酸溶液开始滴定",没有展开详细的实验操作叙述。其

实在实际操作过程中,恒 pH 滴定有预滴定步骤,预滴定是确保滴定分析结果准确的重要步骤,通过预滴定可以提高滴定的精密度和准确度。目前的研究没有提及在正式滴定前有预滴定步骤^[2,9-10]。针对预滴定步骤,本研究提出在预滴定之前不添加样品,预滴定结束后,系统确认,提示添加样品的时候,再添加样品,然后搅拌 5 min。

综上,恒 pH 滴定实验的操作步骤主要为:①启动任务;②预滴定;③加入样品;④搅拌;⑤正式滴定;⑥自动停止。每个样品至少重复3次测试。

(5)数据处理

DL/T 943—2005 规定"根据式(1)和(2)计算石灰石粉转化分数为 80%时所需滴定盐酸的体积。测定石灰石粉转化分数达到 0.8 所需的时间 t_{pl} = 5.5,以此时间作为表征石灰石粉反应速率的指标"。目前,有研究者将特定时间内的转化率作为石灰石粉反应速率的评价指标[10-11]。但该判别指标有一定缺陷:假设前期选择了一个时间点,后续的石灰石样品在该时间点的转化率却都达到了 100%,就无法进行比较,所以以特定时间的转化率对比作为判别指标对石灰石样品的比较范围有一定的限制。本研究将石灰石粉转化率达到 80%时所需的时间作为指标进行评判更为直观、方便,对于本研究的时间 t_{pl} = 5.5 越短,说明石灰石粉的活性越好。

其中,公式(2)中的碳酸钙和碳酸镁的质量百分率测定方法参考 GB/T14506. 1~14506. 28—93《硅酸盐岩石化学分析方法》。

$$\frac{m\omega_{\text{CaCO}_3}}{M_{\text{CaCO}_3}} + \frac{m\omega_{\text{MgCO}_3}}{M_{\text{MgCO}_3}} = \frac{cV_{100\%}}{1000}$$
 (1) [12]

$$X(t) = \frac{V_t}{V_{100\%}} \times 100\%$$
 (2)^[12]

式中:

m—石灰石粉的质量,g;

 ω_{CaCO_3} 一石灰石粉中碳酸钙的质量百分率,为实测值:

 ω_{MgCO_3} 一石灰石粉中碳酸镁的质量百分率,为实测值;

 M_{CaCO_3} 一碳酸钙的摩尔质量,为 100 g/mol; M_{MgCO_3} 一碳酸镁的摩尔质量,为 84 g/mol;

c一酸的浓度, mol/L;

 $V_{100\%}$ —石灰石粉全部转化滴定所消耗的酸体积,mL;

X(t)—t 时刻,石灰石粉的转化分数,取 0.8; V_t —t 时刻,滴定所消耗的酸体积,mL。 精密度 [12].

在置信概率为 95 %条件下,置信界限相对值在 5 %以内,置信界限相对值按式(3)计算:

$$\Delta = \pm (1.96 \times CV) / \sqrt{n}$$
 式中:

CV一测试变异系数,CV=(标准偏差 SD/平均值 Mean)×100%;

n—试样个数, $n \ge 3$ 。

本研究按照 DL/T 943—2005 对每种石灰石进行了至少三次重复实验,发现恒 pH 滴定实验的重复性较差。从每组实验结果来看,要满足精密度的要求很困难,以 SHS05 的测定结果为例(如图4~6 及表 2 所示)。从图中来看,SHS05 的 3 次检测结果都属于肉眼可见的平滑状态,但是计算的精密度却为 8 %,不满足置信界限相对值在 5 %以内的条件。

表 2 石灰石 SHS05 的三次实验数据

样品编号	$V_{100~\%}(~\mathrm{mL})$	$V_t(\mathrm{mL})$	t(s)
SHS05-1	11.5	9. 2	649
SHS05-2	11.5	9. 2	661
SHS05-3	11.5	9. 2	768

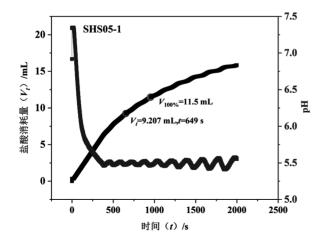


图 4 SHS05 第一次测定结果

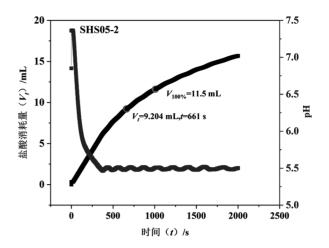


图 5 SHS05 第二次测定结果

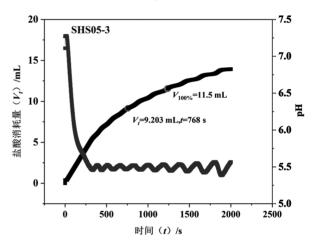


图 6 SHS05 第三次测定结果

所以,本研究提出一种可分析数据选取的方法。首先,提出了 pH 值随时间变化曲线的波动范围为 5.5±0.2。然后,再根据其拟合曲线找出规律。对于 pH 为 5.5±0.2 的要求,举例选取了 SHS02 的两组数据:一组数据是 pH 值在整个实验过程中都在 5.5 附近,波动很小;另一组数据是 pH 曲线在最后的最低点或者最高点正好 pH = 5.5±0.2 作为临界点(该组数据作为数据选取的低限)。

对于滴定实验的体系反应过程,石灰石样品的量是一定的,随着滴定时间的延长,盐酸的滴定速率就越慢,盐酸消耗量随时间变化的曲线类似于指数函数的变化趋势。如图 $7 \sim 8$ 所示,将这两组数据拟合为指数函数形式: $y = A_1 \cdot \text{EXP}(x/t_1) + y_0$ 。用来描述一个随时间(x)指数衰减的过程。 A_1 表示函数在初始时刻(当x = 0 时)的振幅,即衰减过程开始时的初始高度或强度;其对应到滴定实验的化学反应中,就是初始的反应速度。在统计学中, R^2 (R-

squared)是一种衡量回归模型预测能力的统计量。 R^2 评估的是拟合回归线周围数据点的散布情况,它也称为判定系数,或多元回归的多元判定系数。对于同一数据集,较高的 R^2 值表示观测数据与拟合值之间的差异较小。它的值范围在 $0\sim1$ 之间,数值越大表示观测数据与拟合值的差异越小,对应到本滴定实验结果中, R^2 越靠近 1,说明实验结果曲线越平滑。从表 3 的数据可以得出,平滑曲线的 $R^2 \geq 0.997$ 时,该数据可选取分析。

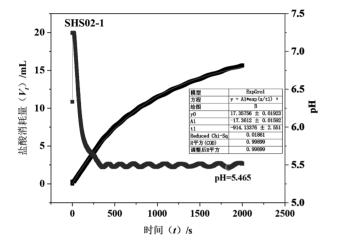


图 7 SHS02-1(平滑)的 pH 波动范围及拟合曲线

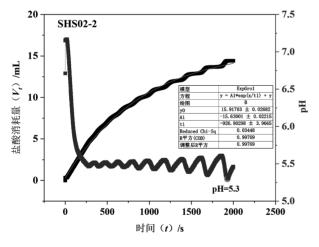


图 8 SHS02-2(临界)的 pH 波动范围及拟合曲线

本研究首先规定了 pH 值随时间变化曲线的波动范围,再根据其盐酸消耗量随时间变化的拟合曲线找出指数函数的规律。所以,提出数据的选取主要考虑的两个方案:方案一(DL/T 943—2005):3 次重复实验结果满足置信界限相对值<5 %的要求;方案二:①pH 随时间变化曲线:最后一个 pH 最高点和最低点在 5.5 ± 0.2 范围内;②盐酸消耗量随时间变化曲线:其拟合曲线为指数函数形式 $y=A_1$.

 $\text{EXP}(x/t_1) + y_0$,对应的 $R^2 \ge 0.997$ 。两个为独立的 数据选取方案,若方案一满足,则不需要考虑方案 二;若多次实验后,方案一仍不满足,则要使用方案二。

表 3 石灰石 SHS02 实验数据的拟合方程参数

样品编号	$ A_1 $	t ₁	y_0	R^2
SHS02-1	17. 361 2	914. 133 76	17. 357 56	0.99899
SHS02-2	15.630 0	926. 802 98	15.917 63	0.997 69

1.2 反应速率的优化

通过改变恒 pH 滴定方法中的最大加液速率,对滴定实验的数据进行对比分析,选择最适用于石灰石滴定的最大加液速率。本研究进行了 5 组滴定实验,对石灰石粉 SHS01 进行恒 pH 滴定实验,最大加液速率分别为 0.5 mL/min、1 mL/min、2 mL/min、4 mL/min 及 6 mL/min,其余滴定条件均一致,结果如图 9~13 及表 4 所示。

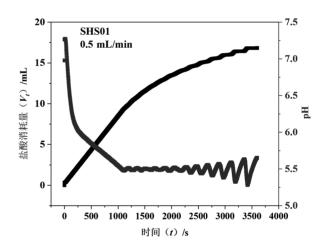


图 9 最大加液速率为 0.5 mL/min 的滴定结果

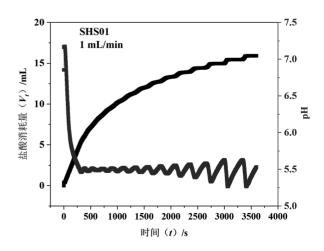


图 10 最大加液速率为 1 mL/min 的滴定结果

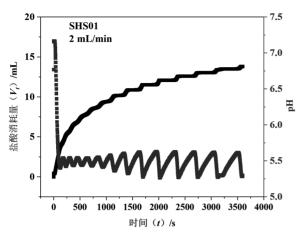


图 11 最大加液速率为 2 mL/min 的滴定结果

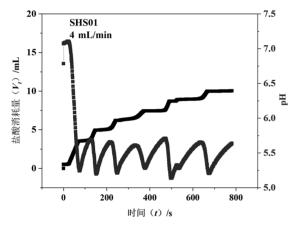


图 12 最大加液速率为 4 mL/min 的滴定结果

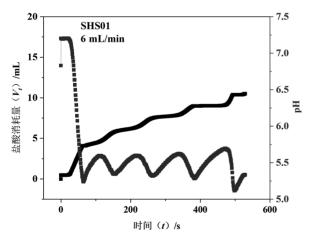


图 13 最大加液速率为 6 mL/min 的滴定结果

表 4 最大加液速率对 SHS01 滴定实验结果的影响

最大滴定速率	最初达到 pH5.5 范围	pH 曲线的
(mL/min)	最低点的时间(s)	波动强度
0.5	1 111	很小
1	315	小
2	126	较小
4	75	大
6	64	大

如图 9~13 所示,增大最大加液速率会使得反应体系最初达到 pH5.5 范围最低点的时间缩短,说明最大加液速率越大,该滴定实验就越快达到 pH5.5 的反应体系环境。并且这段时间 0.1 mol/L 盐酸是匀速滴定。但是,最大加液速率过大时,例如为 4 mL/min 和 6 mL/min, pH 曲线的波动很大,出现"超调"现象,对实验结果会造成较大的误差。减小最大加液速率为 0.5 mL/min、1 mL/min 和 2 mL/min(图 9~13),发现 pH 曲线的波动减小很多。但是相应的速率越小,反应体系达到 pH5.5 的时间就越长,该实验为恒 pH 滴定,所以应尽可能缩小反应体系达到 pH5.5 的时间。

之前的研究结果表明^[13],滴定时间为 2 200~2 900 s 之间,我们推测该研究所采用的滴定速率较小,与 0.5 mL/min 的结果相近,但是过低的最大滴定速率使得 pH 下降速度过慢,不能很快达到恒滴定状态,与工程实际不符。

由于恒 pH 滴定要求实验过程中的 pH 值相对稳定,所以要求体系 pH 值的波动尽可能小,并且在 pH5.5 附近。综合反应体系达到 pH5.5 的时间尽量短和 pH 曲线波动尽可能小的要求下,本研究提出的 石灰石滴定实验的最大加液速率选择为1 mL/min。

2 五种石灰石粉的反应速率测定和结果分析

2.1 石灰石成分分析结果

石灰石 SHS01-SHS05 的成分分析结果见表 5。由于本研究主要需要 MgO 和 CaO 的含量,故本表仅列出石灰石粉的 MgO 和 CaO 的含量。从表 5 可以看出,SHS01-SHS05 的氧化钙含量都比较高,氧化钙含量范围在 48.11~54.09 %(50 %左右);氧化镁含量很低。通过氧化钙和氧化镁的质量分数计算出石灰石中碳酸钙和碳酸镁的质量分数(表 5)。SHS01-SHS05 的氧化钙含量高低顺序为:SHS01>SHS03>SHS02>SHS05>SHS04。

2.2 石灰石粉滴定实验结果分析

基于以上建立的恒 pH 滴定实验方法,考察石灰石粉 SHS01-SHS05 反应速率的大小。按照公式(1)和公式(2)计算出每种石灰石样品的 $V_{100\%}$ 和 V_{t} ,然后在滴定实验的结果曲线中找到 V_{t} 对应的时

间 t_{\circ} SHS01-SHS05 的恒 pH 滴定结果如表 5 及图 $14\sim18$ 所示。

	表 5	石灰石成分分析结果		%
样品编号	CaO	MgO	CaCO ₃	${ m MgCO_3}$
SHS01	54. 09	0.90	96. 59	1.89
SHS02	53.76	1.52	96.00	3. 19
SHS03	53.83	0.66	96. 13	1.39
SHS04	48.11	2.73	85. 91	5.73
SHS05	52.05	1.82	92. 95	3.82

如图 14~18 所示,黑色曲线表示盐酸滴定体积随时间的变化,蓝色曲线表示石灰石悬浮液 pH 值随时间的变化。从表 6 可知,SHS01-SHS05 的 $t_{\rm pH}$ = 5.5 分别为 1~000 s,987 s,1~189 s,697 s 和 661 s,以 $t_{\rm pH}$ = 5.5 作为烟气湿法脱硫用石灰石反应速率的指标,则这五种石灰石的速率大小顺序为:SHS05>SHS04>SHS02>SHS01>SHS03。从图 14~18 发现,在滴定盐酸量超过 $V_{100~\%}$ 之后,pH 值随时间的变化曲线波动越来越大。

图 14 SHS01 的盐酸消耗量和 pH 随时间的变化曲线

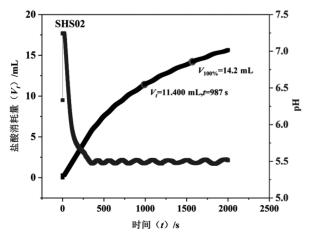


图 15 SHS02 的盐酸消耗量和 pH 随时间的变化曲线

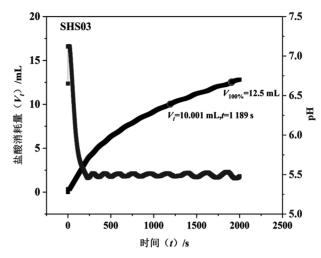


图 16 SHS03 的盐酸消耗量和 pH 随时间的变化曲线

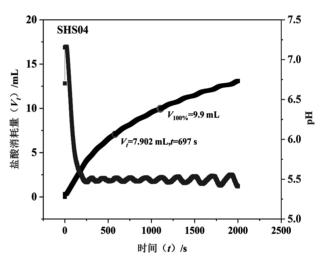


图 17 SHS04 的盐酸消耗量和 pH 随时间的变化曲线

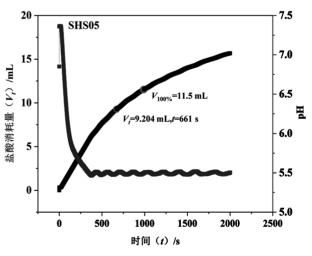


图 18 SHS05 的盐酸消耗量和 pH 随时间的变化曲线

结果表明,SHS05 和 SHS04 的石灰石反应活性 较高,巴西某电厂石灰石反应活性较低,贵州某电 厂的石灰石反应活性最差。

表 6	石灰石反应速率数据结果表

样品编号	$V_{100~\%}(\mathrm{~mL})$	$V_t(\mathrm{mL})$	t(s)
SHS01	13.8	11.0	1000
SHS02	14. 2	11.4	987
SHS03	12. 5	10.0	1189
SHS04	9.9	7. 9	697
SHS05	11.5	9. 2	661

3 结语

本文针对国内湿法脱硫用石灰石粉反应速率的测定方法未形成统一体系的问题进行了研究,使用全自动电位滴定仪基于电力行业标准 DL/T 943—2005 对石灰石粉反应速率的测定方法进行了优化,规定包括滴定实验的参数设定、实验操作顺序、实验数据的选取方案等。研究最大加液速率对滴定实验结果的影响,结合滴定时间和滴定曲线的波动程度这两个因素选取最优的最大加液速率,并使用完善后的实验方法完成了来自不同地区的五种石灰石粉的反应速率测定,得到以下结论。

- (1)提出石灰石粉滴定实验的数据选取主要有两个方案。方案一:3次重复实验结果满足置信界限相对值<5%的要求;方案二:①pH值随时间变化曲线:最后的pH曲线的最高点或最低点在5.5±0.2范围内;②盐酸消耗量随时间变化曲线:其拟合曲线为指数函数形式 $y = A_1 \cdot \text{EXP}(x/t_1) + y_0$,对应的 $R^2 \ge 0.997$ 。
- (2)最大加液速率为 1 mL/min 时既可以使反应体系达到 pH5.5 的时间较短,也满足了 pH 曲线波动较小。
- (3)使用该实验方法对来自不同地区的五种石 灰石粉 SHS01~SHS05 进行了烟气湿法脱硫的反应

速率测定,结果表明五种石灰石粉的烟气湿法脱硫 反应速率大小顺序为: SHS05 > SHS04 > SHS02 > SHS01>SHS03。SHS05 和 SHS04 石灰石的反应活 性较高,巴西某电厂石灰石反应活性较低,贵州某 电厂的石灰石反应活性最差。

参考文献:

- [1] 路璐,钟智坤,丁立萍,等. 石灰石活性试验方法介绍及探讨 [J]. 华北电力技术,2015(8):33-36
- [2] 高晓燕. 火电厂湿法烟气脱硫中石灰石活性的研究[D]. 内蒙古工业大学,2009
- [3] 王惠挺. 钙基湿法烟气脱硫增效关键技术研究[D]. 浙江大学. 2013
- [4] 袁娟娟,黄萍. 快速测试湿法烟气脱硫用石灰石反应活性方法的研究[J]. 现代化工,2015,35(3):178-180
- [5] 郭瑞堂,高翔,王君,等. 湿法烟气脱硫系统中石灰石活性的评价[J]. 动力工程,2008,28(3):430-432
- [6] 朱天乐,李曜,凌炫,等. 湿式烟气脱硫中石灰石反应活性[J]. 环境科学,2005(6):17-20
- [7] 武鹏飞. 石灰石-石膏湿法脱硫工艺影响因素分析[J]. 山西化工,2024,44(9);260-262
- [8] 陆万鹏,王雅雯,宗绍梁. 石灰石-石膏湿法脱硫工艺影响因素 分析[J]. 节能,2024,43(4):61-63
- [9] 郑观文,杜艳超,曹顺安.城市中水对脱硫石灰石反应活性的 影响[J].广东化工,2016,43(15):85-86
- [10] 李向阳. 石灰石—石膏湿法烟气脱硫石灰石活性实验研究 [D]. 南京理工大学,2004
- [11] 郭瑞堂,高翔,王君. 湿法烟气脱硫石灰石的活性[J]. 燃烧科 学与技术,2007(6):485-490
- [12] 国家能源局. DL/T 943-2015 烟气湿法脱硫用石灰石粉反应速率的测定[S]. 北京:中国电力出版社,2015
- [13] 尹连庆,郭静娟. 石灰石—石膏湿法脱硫系统石灰石品质试验研究[J]. 电力科技与环保,2011,27(1):25-27

基于数字缸筒形阀的试验台测控系统

谭帅¹ 贾小平^{2*} 郭列¹ 邬廷军² 刁何俊¹ 林雨欣¹

1. 三峡金沙江川云水电开发有限公司永善溪洛渡电厂,云南 昭通 657300; 2. 东方电气自动控制工程有限公司,四川 德阳 618000

摘要:针对现阶段缺少测试筒形阀接力器产品性能的手段以及只能进行简单的产品负载测试的问题,本文设计了基于数字缸筒形阀的试验台的测控系统。该系统可控制单个接力器测试组也可同步控制所有接力器测试组。通过控制试验台六个接力器测试组的负载情况、位移、加载时间等参数,并分析实验采集到的压力、位移、负载力等数据,来探究筒形阀在各种工况下的同步特性和避免工作时发生发卡故障。此试验台系统的筒形阀同步方式采用数字液压同步,该控制系统通过一个数据交换中心来实现存储实验数据和读取数据,数据监测站通过以太网来读取数据和传输控制命令,操作人员只需在触摸显示屏的控制界面上点击相应操作按钮即可实现模拟不同工况的实验场景。

关键词:试验台控制系统;数字液压缸;接力器同步控制;控制界面

中图分类号:TV736

文献标识码·A

文章编号:1001-9006(2025)05-0031-07

Test Bench Control System Based on Digital Cylinder Tube Valve

TAN Shuai¹, JIA Xiaoping^{2*}, GUO Lie¹, WU Tingjun², DIAO Hejun¹, LIN Yuxin¹

Xiluodu Hydropower Plant, Three Gorges Jinsha River Chuanyun Hydropower Development Co., Ltd., 657300, Zhaotong, Yunnan, China;
 Dongfang Electric Autocontrol Engineering Co., Ltd., 618000, Deyang, Sichuan, China)

Abstract: In response to the current lack of means to test the performance of cylindrical valve relay products and the problem of only simple product load testing, this paper designs a measurement and control system based on a digital cylinder cylindrical valve test bench. This system can control a single relay test group or synchronously control all relay test groups. By controlling the load conditions, displacement, loading time and other parameters of the six relay test groups on the test bench, and analyzing the pressure, displacement, load force and other data collected from the experiment, this study aims to explore the synchronization characteristics of the cylindrical valve under various working conditions and avoid card sticking faults during operation. The cylindrical valve synchronization method of this test bench system adopts digital hydraulic synchronization. The control system stores and reads experimental data through a data exchange center. The data monitoring station reads data and transmits control commands through Ethernet. The operator only needs to click the corresponding operation button on the control interface of the touch screen to simulate different experimental scenarios.

Key words: test bench control system; digital hydraulic cylinder; relay synchronization control; control interface

水轮发电机组是我国水电工程的核心部分。由于我国河流众多且河流分布情况和流动情况复

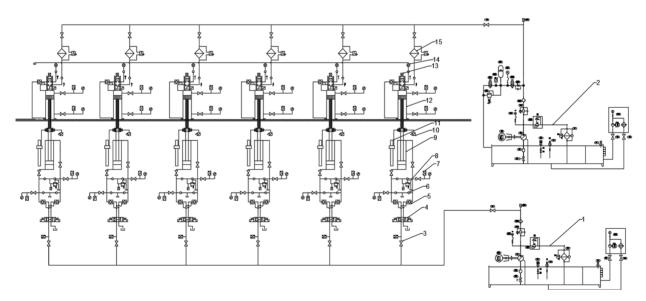
杂,泥沙等水中残渣损坏水轮机的情况时有发生, 此时导叶片或其它部件受到损伤导致机组无法正

收稿日期:2025-07-08

基金项目:项目名称:三峡金沙江川云水电开发有限公司永善溪洛渡电厂科研项目资助;项目编号:Z412302039。

作者简介: 谭帅(1985—),男,工程师,自动分部技术师。现就职于三峡金沙江川云水电开发有限公司永善溪洛渡电厂,主要从事水电站运行管理、自动化研究方向工作。通信邮箱: tan_shuai@ctg. com. cn。

贾小平(1972—),男,1995年毕业于华中理工大学,本科,正高级工程师,现就职于东方电气自动控制工程有限公司,主要从事水轮机控制技术工作。通信邮箱;jiaxp@dongfang.com。


常发电。在此等情况下需要隔离动水进行水轮机组的维修,筒形阀的应用可以较好的解决动水隔离的问题^[1-2]。水轮机发电作为国家重要大型发电项目,对于安全性和长期稳定性有较高要求,筒形阀是保障此要求的一个重要应用。

筒形阀控制系统的关键问题在于接力器位移的同步,且筒形阀的位移速率和接力器的位移速率同步保持在允许误差范围内^[34]。

筒形阀主要由筒体(分瓣结构)、操作机构、同步机构三大部分组成^[5],同步机构是筒形阀的核心机构,确保所有接力器的同步误差在系统允许范围从而避免筒形阀发卡。本文使用的数字液压缸主要由控制单元、机械反馈单元、执行单元组成^[6]。数字液压缸的执行单元是缸内的活塞,活塞通过超级螺母和筒形阀连接。筒形阀启动和关闭时由于外部因素的影响导致油缸的活塞负载情况变化,因此筒形阀系统的负载特性也是筒形阀系统一个关键的问题。

1 试验台液压系统

本试验台的液压部分由加载缸和受载缸两大 关键部分组成,此外加载缸和受载缸都单独配备了 一个油箱系统。试验台的受载缸可选用不同类型 的接力器,来测试不同类型接力器的受力情况和同 步特性等。本试验台的受载缸为东方电机股份有 限公司设计研发的数字缸,将受载缸的活塞杆和加 载缸的活塞杆连接起来,通过对加载缸接入高压油 来模拟筒形阀的各种工况,且可通过此实验台测量 出数字缸接力器的极限受载情况,测出极限负载对 于确保筒形阀处于安全工作负载内有重大意义。 为了探究数字缸接力器在工作时的同步特性,在加 载缸和受载缸各加装一个高精度位移变送器。该 试验台的受载缸竖直安装在地面上,加载缸安装在 地下空腔内,这样的安装方式让加载缸处于一个较 为稳定的环境内,提高了试验台的精度。试验台液 压原理图如图1。

注:1.油站一;2.油站二;3. 开关阀;4. 电磁换向阀;5. 液控单向阀;6. 单向阀;7. 压力传感器;8. 溢流阀;9. 加载缸体;10. 力传感器;11. 位移变送器;12. 数字液压缸体;13. 编码器;14. 流量计;15. 过滤器。

图 1 试验台液压原理图

1.1 加载缸

加载缸部分由独立油箱和六个加载缸、位移 变送器、力传感器、压力传感器、单向阀、液控单 向阀、二位三通电磁阀组成。油箱输入不同压强 的高压油源给加载缸可模拟不同重量的筒形阀

以及不同工作状况下的运动情况。此加载缸部分在实验过程中,由电气控制系统控制柜给出信号,油箱输出特定压强的油源驱动六个加载缸的上下移动,以此模拟筒形阀的各种工况。为了更加直观的探索筒形阀工作时的位移情况和速率,

京市電氣評論 2025.9.25

在加载缸和受载缸连接部分接入一个拉杆式位 移变送器,便于在实验中直观的观测位移情况, 同时将六个加载缸部分的位移变送器安装成一 个直线整列形式,可清晰的观测出同步情况以及 快速检测出同步不统一的加载缸。力传感器将 每个接力器所受的力反馈给电气控制系统,电气 系统可可依据此数据计算出数字缸的极限受 载力。

1.2 接力器受载缸

受载缸部分由数字缸、高精度位移变送器、压力传感器、独立油箱(带有蓄能器)等组成。油箱中的蓄能器部分在油站关闭后,向受载缸提供压力油使试验台回到初始状态。

受载缸采用东方电机股份有限公司的数字缸, 其由数字液压伺服阀与接力器组成,液压伺服阀由 伺服电机驱动,推动阀芯向开、关接力器的方向移 动,使液压伺服阀输出压力油推动接力器向开、关 方向运动。当接力器运动时,反馈机构推动阀芯向 液压伺服阀的中位运动,当接力器到达输入要求的 位置后,阀芯正好处于中位,输出的油路切断,接力 器停止并保持在当前位置。电气控制系统可将输 入信号进行量化输出给伺服电机,同时数字缸上集 成有接力器位置检测编码器,将接力器的位置进行 量化反馈给电气控制柜,实现接力器的量化控 制^[7]。受载缸体如图 2 所示。

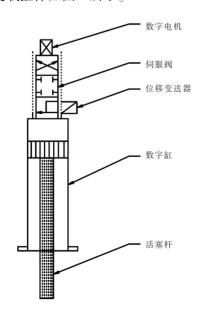


图 2 受载缸体

在整个实验台液压系统中接入了压力传感器、 位移变送器、力传感器、流量计,电气控制系统通过 上述传感器和液压系统互联,电气系统通过采集的 数据可分析数字缸的同步特性和受力特性等。

2 测控系统电气原理

试验台测控系统可分为用户管理模块、传感器(开关)控制模块、数据监测模块、通讯模块、报警监测模块、系统日志模块、安全管理模块等组成。其系统模块组成如图 3 所示。

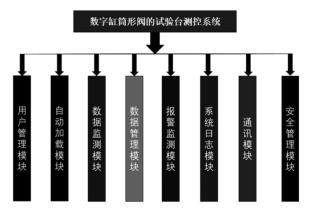


图 3 系统模块组成

筒形阀试验台的加载缸和受载缸以及两个油箱开关等控制装置都由电气控制系统控制。电气控制装置由 PLC(可编程逻辑控制器)、触摸显示屏、电控按钮、信号灯、计算机工作站、继电器、电源转换装置等组成,这些控制元件集成在一个控制柜中。此试验台的电气控制系统需完成实验数据的记录、读取、分析,此试验台中接入了位移变送器、压力传感器、力传感器、流量计、数字电机等元件,上述元件需要采集实验数据和接收控制系统的指令,为了增加控制系统的稳定性以及响应速度,建立一个数据交换中心存储实验数据和接收工控机的指令。该试验台电气控制系统可分为采集模块、存储模块、分析模块,各类传感器将实验数据存储在数据交换中心,工控机读取实验数据之后判断并发出相应指令。

2.1 试验台接力器位移、负载测量

筒形阀控制系统最核心技术就是接力器同步 控制技术,此试验台的最主要目的也是探究数字液 压同步方式的同步特性以及推进此技术的改进。 在每次实验之前需要进行试验台的初始化,D01~D06、D11~D16将检测加载缸和受载缸活塞杆的位置,如有超过两个以上的加载缸活塞杆位置不一致,电气控制系统将会发出报警,此时试验台将不会有任何操作。考虑到加载缸和受载缸活塞杆的

连接部分存在安装间隙以及其它安装间隙,取间隙 余量为γ,接力器允许出现的误差为 &。于是接力 器的位移偏差在±(γ+&)=±BMP 时控制中心判定 此时接力器处于同步运行状态。数据输入交换原 理如图 4 所示。

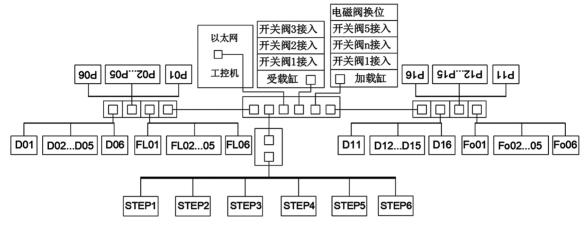


图 4 数据测量交换原理图

加载缸在压力油的驱动下作为数字缸的负载, 实验过程中 P11~P16 测出测量出加载缸上腔、下腔 压力油的实际压强 P_3 、 P_4 ,且上腔、下腔受力面积为 S_3 、 F_1 。 计算负载可依据式(1)计算。

$$F_1 = S_4 \times P_4 - S_3 \times P_3 \tag{1}$$

控制中心计算出的计算负载和力传感 FO 测出的实际负载进行对比验证,如两者数值不相同或差距过大,控制中心给出报错提示。此时需停机检查故障。

2.2 试验台同步工作原理

试验台同步控制的核心元件是 PLC 控制器,通过时刻对比六个接力器活塞杆的实际位移是否在允许偏差内来判断是否发出失步信号。选取 1 号接力器为基准接力器,在实验开启、关闭时实时计算基准接力器和非基准接力器的的偏差值并偏差值判断压力有流量分配。如偏差超过允许误差,电气控制系统发出失步信号,此时系统依据矫正信号来调整流量分配,发出加速(停止)步进电机的控制脉冲信号。如果偏差值 BM 大于最大允许偏差 30 % BM_{MAX} 时,试验台停止运行。当偏差处于允许偏差和 30 % BM_{MAX} 内时,电气控制系统会发出失步信号,直到偏差在允许范围内。试验台同步工作原理流程图如图 5 所示。

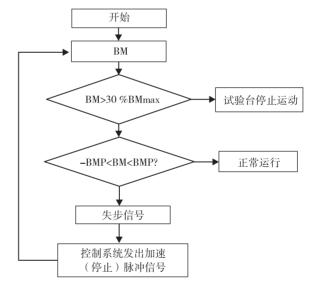


图 5 同步工作原理

2.3 测控系统 PLC 使用原理

确保信号能够正确传输。测控系统中的各种传感器实时监测系统的压力、位移、负载等物理量,再将这些传感器将物理量转换为电信号,并传输给PLC芯片。PLC芯片接收到传感器传来的模拟信号后,通过内部的模数转换模块将其转换为数字信号,以便进行数字处理和运算。同时,PLC对信号进行滤波、放大等处理,以提高信号的稳定性和准确性。其电气原理图如图 6 所示。

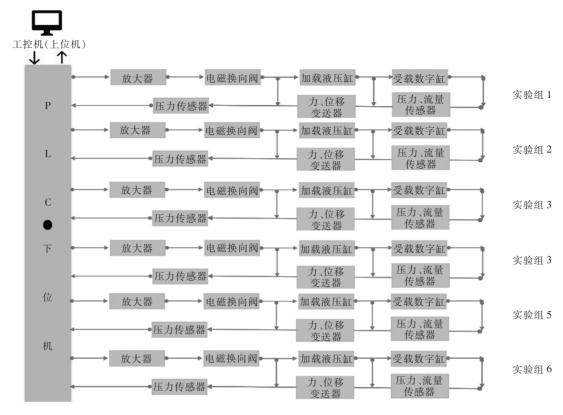


图 6 测控系统电气原理

PLC 芯片根据接收到的传感器数据,按照预设的控制程序进行数据分析和处理。根据压力传感器的数据判断液压系统的压力是否达到设定值,根据位移传感器的数据确定液压缸是否到达指定位置,根据力传感器的数据确定数字缸的安全负载阈值。PLC 芯片接收六个加载缸组测量的数据进行分析、判断并执行相应的动作。通过对六个加载缸组施加不同的负载力,来探究筒形阀发卡的状况。

3 筒形阀试验台测控系统控制界面

为了方便操作人员设置加载缸的参数以及探究接力器的性能,接力器在出厂之前会进行一系列的性能测试,并淘汰不合格的产品。本文针对该试验台设计了一个测控系统的控制界面。在此界面上能够实时显示各种测量参数,如压力、流量、位移、负载力等。此控制界面分为用户登录、自动加载、数据监测、数据管理中心、报警监视、系统日志、紧急停机七个部分组成。

在用户登录界面,操作人员需要输入正确的密码才能使用该系统。且在此系统中分为系统管理

员、维修员、操作员三个权限等级,其中系统管理员等级最高维修员次之,操作员权限等级最低。此界面如图 7 所示。

图 7 用户登录界面

如系统使用用户有变动,需系统管理员的权限才能进行添加、删除人员的操作。

3.1 自动加载界面

在自动记载界面可显示出系统的油箱 1、2 的剩余油量、使用年限、故障次数等数据。在此界面可以开启关闭所有压力传感器的接入状态,试验台的压力传感器的接入状态通过折线图的形式显示,状态 1 为开启状态、状态 0 为关闭状态。在需要修改压力传感器的接入状态时,只需要调出压力传感器

的接入状态表,修改表格中的 1、0 状态。在此界面的下端部分,显示油箱 1、2 的开启、关闭状态以及加载缸、受载缸部分的总开关。

六个加载缸开关 J1~J6 以及六个受载缸开关 S1~S6 的状态由颜色灯显示,绿灯表示开启状态红灯表示关闭状态。如需修改开关状态,只需单击开关指示灯按钥即可完成修改。自动加载界面如图 8 所示。

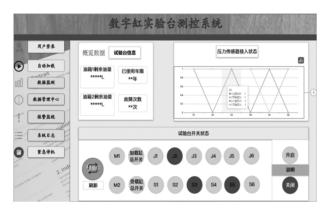


图 8 自动加载界面

3.2 数据监测界面

数据监测界面主要分为加载缸受载缸组测试 数据、实时位移图组成。界面中间区域分6个部分, 对应"实验组 J1-J6",每个部分都列出了受载缸流 量、受载缸上腔压力、受载缸下腔压力、加载力、加 载位移、加载缸上腔压力、加载缸下腔压力、加载缸 流入压力等参数,用于实时监测和展示各实验组相 关数据。右侧是"位移-时间"图表,以折线图形式 展示位移随时间的变化情况,帮助用户直观了解实 验中位移的动态变化。且在此折线图上六个位移 传感器的测试的数据都显示出,用户可直观的看出 六个接力器的同步状态。以便在进行出厂测试时 调整故障接力器。右下角有"加载"和"卸载"箭头 按钮,用于控制实验加载和卸载操作。此加载、卸 载部分控制的是电磁换向阀,通过控制电磁换向阀 的换向来完成控制加载缸的加载以及卸载操作。 数据监测界面布局如图 9 所示。

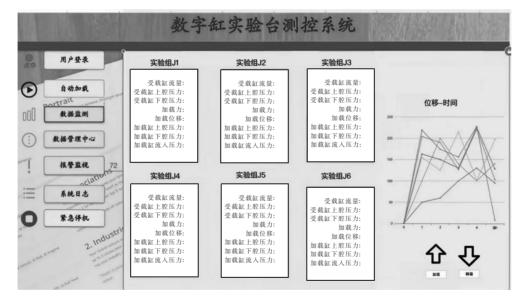


图 9 数据监测界面设计布局

3.3 日志、急停、数据管理

此控制界面可控制每个缸体的开启(关闭),在 实验有需求时可独立开启单个实验缸,实验中受载 缸的流量和接力器的负载力会直接显示在此控制 界面上。在实验过程中出现意外时,可直接关闭油 箱1和油箱2以确保实验人员的安全。实验过程中 六组接力器的位移-时间图会同步显示在控制界面 中间的显示图上,操作人员可直接观察同步情况。 系统管理员可通过系统日志查看系统的使用记录 以及在数据管理中心中调用历史实验数据。此系 统的所有实验数据都存储在数据管理中心,且只有 系统管理员的权限才能删除数据中心中的实验 数据。

4 结语

本文所介绍的试验台控制系统用于数字缸的

探索改进,该控制系统使用数字液压的同步方式, 筒形阀接力器生产厂家可通过此试验台系统探究 产品的不足以及测试产品的性能指标。本试验台 系统对筒形阀的设计改进以及极限指标探索有着 重大意义,产品通过试验台的模拟工况,可避免一 些实际工况中出现的故障以及安全问题。

参考文献:

- [1] 王金兰. 某水电站机组开机过程中圆筒阀窜油故障分析与处 理[J]. 水电站机电技术,2023,46(11):94-96
- [2] 陈彦和,王继承,张彦龙.某大型电站圆筒阀油压装置泄压对 圆筒阀状态的影响分析[J]. 四川水力发电,2023,42(S1):

75-78

- [3] 郑业爽,彭琛越,胡允格,等. 基于 PLC 的水电机组圆筒阀同步 控制系统设计[J]. 水电站机电技术,2024,47(6):9-12
- [4] 孙立鹏. 溪洛渡水电站筒形阀同步方式及运行方式研究[C]// 中国电机工程学会水电设备专业委员会,中国水力发电工程 学会水力机械专业委员会,中国动力工程学会水轮机专业委 员会,中国水力发电工程学会水力机械专委会水力机械信息 网,中国电机工程学会水电设备专委会信息网.第二十一次中 国水电设备学术讨论会论文集. 中国电建集团成都勘测设计 研究院有限公司,2017:550-557
- [5] 梁玉福. 水轮机筒形阀[J]. 红水河,2003(2):54-57
- [6] 杨学兰. 阀芯旋转式换向阀的设计及特性研究[D]. 浙江大 学,2013
- [7] 贾小平,邓芳辉,席波,等. 董箐水电站自主可控筒形阀控制系 统改造[J]. 东方电气评论,2024,38(6):33-36+64

超超临界泛轮机变背压运行特性研究

袁鹏¹ 白昆仑^{2*}

1. 华润电力(宜昌)有限公司, 湖北 宜昌 443000; 2. 东方电气集团东方汽轮机有限公司, 四川 德阳 618000

摘要:背压变化是影响汽轮机经济性的主要因素之一,基于东汽研制的某超超临界汽轮机,采用数值仿真与性能试验相结合的方法,研究了机组的变背压运行特性,并与某国外同类型机组对比,得到如下结论:背压变化对末级效率影响较大,对前面级次效率几乎没有影响,背压为 6.7 kPa 时,末级效率最高,背压偏离最佳值越远,末级效率越低;东汽机组变背压运行特性优于国外机组;降低背压时末级动叶内激波损失会增加,提高背压时末级动叶内流场均匀性会变差;背压变化还会导致出口马赫数和排汽角变化,影响余速大小和余速利用率,进而改变低压缸效率。

关键词:背压;效率;流场;末级

中图分类号:TK267

文献标识码·A

文章编号:1001-9006(2025)05-0038-06

Study on Operating Characteristic with Back Pressure Change of the Ultra-supercritical Steam Turbine

YUAN Peng¹, BAI Kunlun²*

(1. China Resources Power (Yichang) Co., Ltd., 443000, Yichang, Hubei, China;

2. Dongfang Turbine Dongfang Turbine Co., Ltd., 618000, Deyang, Sichuan, China)

Abstract: Back pressure change is one of the main factors influence the efficiency of steam turbine. Based on an ultra-supercritical steam turbine developed by DEC, the operating characteristic with back pressure change was studied by numerical simulation and performance test. The results were compared with a same type foreign turbine. The following conclusions were obtained. Back pressure change has an effect on the efficiency of last stage and little effect on the efficiency of previous stages. The last stage efficiency reaches the highest when the back pressure is 6. 7 kPa, and the farther the back pressure deviates from the optimal value, the lower the efficiency of last stage. The DEC turbine's operating characteristic with back pressure change is better than that of the foreign turbine. The shock loss in last rotor increases when the back pressure reduces, and the flow distribution uniformity in last rotor deteriorates when the back pressure increases. Back pressure change also influences the outlet Mach number and exhaust angle, which affects the residual velocity and residual velocity utilization rate, and result in the change of the low pressure cylinder efficiency. Key words: back pressure; efficiency; flow distribution; last stage

提高蒸汽初温和初压是燃煤机组提效最有效的措施^[1]。据统计,主蒸汽温度每提高 $10 \, ^{\circ}$ 、机组热耗率降低 $0.25 \, ^{\circ}$ ~ $0.3 \, ^{\circ}$;再热蒸汽每提高 $10 \, ^{\circ}$ 、机组热耗率降低 $0.15 \, ^{\circ}$ ~ $0.2 \, ^{\circ}$;主蒸汽压力每提高 $1 \, ^{\circ}$ MPa,机组热耗率降低 $0.13 \, ^{\circ}$ ~

0. 15 % $^{[2]}$ 。国内已投运的煤电汽轮机蒸汽最高温度为 620 ℃,630 ℃等级汽轮机已进入施工阶段,650 ℃和 700 ℃等级汽轮机组尚处于研究阶段 $^{[34]}$ 。

超超临界汽轮机蒸汽参数高,热耗率明显低于 其它等级机组,是目前国际最先进的煤电机组,但仍

收稿日期:2025-01-21

作者简介:袁鹏(1980—),男,2004年毕业于西安理工大学热能与动力工程专业,学士,工程师。现就职于华润电力(宜昌)有限公司,主要从事 汽轮机的安装、检修、维护。

白昆仑(1989—),男,2014年毕业于西安交通大学能源与动力工程学院动力工程专业,硕士,高级工程师。现就职于东方电气集团东方汽轮机有限公司产品研发中心,主要从事汽轮机设计工作。通信邮箱:345853731@qq.com。

有很多因素可能会影响机组经济性,背压偏离设计值就是其中一项。超超临界汽轮机分为湿冷和空冷两大类,湿冷机组的设计背压约为 5 kPa,空冷机组的设计背压约为 10 kPa。实际运行中,季节变换影响冷却水温或环境温度,导致背压变化范围较大。

目前,国内针对背压变化对汽轮机经济性影响 的研究较多。包劲松[5]等采用性能试验的方法研 究了某改进型 1 000 MW 汽轮机变背压热力特性, 发现低压缸实际工作特性与设计预期存在偏差会 对机组经济性产生不利影响。李海涛[6]等采用等 效焓降计算方法研究了国产 600 MW 汽轮机变背压 运行情况,发现背压偏离设计值会给机组经济性和 安全性带来影响。韩平[7] 采用理论计算方法研究 了背压变化对凝汽机组功率的影响,发现绘制流量 功率曲线可以更精确地预估汽轮机变背压运行效 率。杨海叶[8]研究了背压变化对汽轮机经济性影 响的计算方法,发现目前广泛采用的热力学方法在 变背压经济性分析时存在一定偏差。上述研究均 是基于理论或性能试验方法展开,并未从机理上揭 示背压变化对机组经济性影响的原因。本文基于 东汽研制的某超超临界汽轮机,采用数值仿真与性 能试验相结合的方法,研究了机组的变背压运行特 性,为大功率煤电汽轮机高效、灵活和稳定运行提 供有益参考。

1 仿真条件

1.1 机组简介

本文以东汽研制的某超超临界汽轮机为研究对象,该机组主汽温度为 $600 \, ^{\circ} \, C$,主汽压力为 $28 \, MPa$,再热蒸汽温度为 $620 \, ^{\circ} \, C$,设计背压为 $4.7 \, kPa$ 。机组投运后,经济性、灵活性和稳定性均达到国际先进水平。实际运行中发现,背压变化时,高、中压缸效率基本不变,低压缸效率有一定变化。该机组包括 A、B 两个低压缸,通流形式均为双分流、5 级冲动式,如图 1 所示。A 缸抽口位于 1、3 级后,B 缸抽口位于 2、4 级后,A、B 缸末级叶片完全相同,1 ~ 4 级叶片略有差异。

1.2 计算模型

低压缸人口为过热蒸汽,出口为湿蒸汽,且末 两级内蒸汽流速高,局部汽流处于超音速区,导致 仿真计算工作量大、收敛性差,因此需尽可能简化 模型。本文以 A 缸为例进行研究, 两侧通流结构完全相同, 且低压缸叶片高, 汽封漏汽对通流效率的影响较小, 因此计算模型包括 A 缸单侧 5 级静动叶、首级后抽口、第3级后抽口、首级静叶入口延长段和末级动叶出口延长段, 如图2所示。

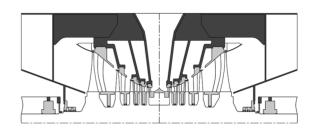
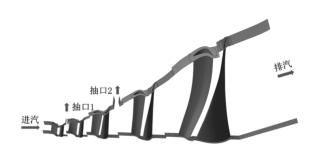
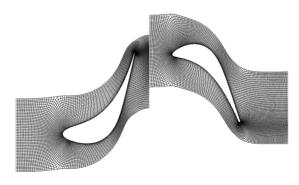
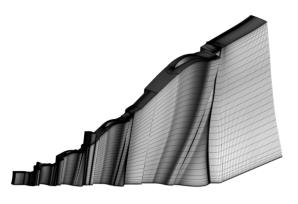


图 1 低压缸结构示意图(A缸)




图 2 计算模型

1.3 网格划分


网格绘制采用 NUMECA 中的 AutoGrid 模块。 AutoGrid 提供多重网格生成技术加速计算收敛速度,对于 N 重网格,相应方向上的网格节点数 M 需满足式(1)规律:

$$M = \sum_{L=N}^{K} 2^{L} + 1 \tag{1}$$

一般而言,N>4后,加速计算的效果开始减弱,并且各重网格之间的数据插值和传递会带来一定程度的误差,因此控制 $N \leq 4$ 。此外,沿叶高网格层数设置为 73,B2B 面网格拓扑结构选择 HOH,进而在保证网格质量和周期性匹配的前提下,控制网格数量。

(a)B2B 网格

(b)三维网格

图 3 网格

1.4 数值方法

数值计算采用 NUMECA 中的 FINE /Turbo 模块,FINE/Turbo 采用结构化网格求解器,内存占用量小,在多级次、高马赫数、湿蒸汽透平计算中具有收敛性好、收敛速度快等优势。湍流模型选择Spalart-Allmaras,该模型在叶轮机械仿真中应用广泛,尤其适用于承受逆压力梯度的边界层模拟。工质选用 NUMECA 内嵌的高精度可凝结水蒸汽数据库。边界条件首级静叶人口给定总压、总温和汽流方向,抽口给定质量流量和初始静压,末级动叶出口给定平均静压。变背压计算时,末级动叶出口平均静压变化范围为 3.7 kPa~12.7 kPa,其它边界条件保持不变,见表 1。计算过程中,当残差小于10⁻⁶、效率和流量波动小于 0.01 %、进出口流量差异小于 0.05 %三个条件同时满足后,认为达到收敛标准。

表 1 边界条件

位置	参数(单位)	取值
	总压(kPa)	577. 2
首级静叶人口	总温(K)	568.6
	汽流方向(°)	90
抽口1	流量(kg/s)	10. 4
1 日 日	初始静压(kPa)	145
抽口 2	流量(kg/s)	10. 7
1世日 2	初始静压(kPa)	22
末级动叶出口	平均静压(kPa)	3.7~12.7

2 背压对效率影响

图 4 为仿真计算得到的各级效率随背压的变化曲线,效率定义为:

$$\eta = \frac{h_{\text{in}}^* - h_{\text{out}}^*}{h_{\text{in}}^* - h_{\text{out}}^*} \tag{2}$$

式中:

 η 为效率;

 h_{in}^* 为入口总焓;

 h_{au}^* 为出口总焓;

h**、为出口等熵焓。

背压变化对末级效率影响较大,对 1~4 级效率 几乎没有影响。背压为 6.7 kPa 时,末级效率最高, 背压偏离最佳值越远,末级效率越低。A、B 缸末级 叶片完全相同,因此变背压特性也非常接近,本文 以 A 缸为例进行研究,能够反映机组整体的变背压 运行特性。

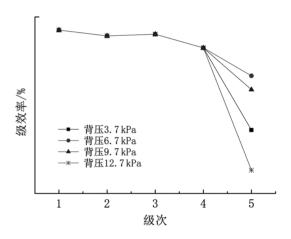


图 4 各级效率随背压变化曲线

实际工程中,一般通过缸效率随出口容积流量的变化来反映机组的变背压运行特性,在进汽参数和流量不变的前提下,背压变化会导致排汽密度变化,进而改变末级叶片出口容积流量,背压高则出口容积流量小,背压低则出口容积流量大。图 5 为低压缸效率随出口容积流量的变化曲线,仿真计算时因忽略汽封漏汽和进排汽结构的影响,效率略高于性能试验值,但仿真计算得到的效率随出口容积流量的变化规律与性能试验非常接近。出口容积流量的变化规律与性能试验非常接近。出口容积流量约为1890 m³/s时,缸效率达到最高值,随着出口容积流量偏离最佳值,缸效率下降的速度有加快的趋势,且出口容积流量小于最佳值时,缸效率下降的速度较出口容积流量小于最佳值时更快。

为评价该机组变背压特性的优劣,与某国外机组展开对比,如图 5 所示。国外机组在出口容积流量约为1910 m³/s 时,缸效率达到最高值,随着出口

京方電氣評論 2025.9.25

容积流量偏离最佳值,缸效率下降的速度也有加快的趋势,但出口容积流量小于最佳值和大于最佳值时,缸效率下降的速度基本相当。总体来看,在实际运行背压范围内,东汽机组低压缸效率均高于国外机组,容积流量低于最佳值后,东汽机组缸效率下降较国外机组略快,缸效率优势有所减弱;容积流量高于最佳值后,东汽机组缸效率下降较国外机组略慢,缸效率优势有所增强。

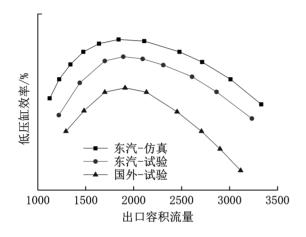


图 5 低压缸效率随出口容积流量变化曲线

3 背压对流场影响

图 6 为不同背压下子午面流线图。随着背压变化,1~4 级内流速和流线几乎没有变化,末级内流速和流线变化比较明显。背压为 6.7 kPa 时,末级内流线与流道接近平行,整体流场分布非常均匀;背压降低至 3.7 kPa 时,流线分布变化不大,但流速明显增加,尤其是末级动叶出口,整体流速较高,流速沿叶高分布也不均匀;背压提高至 9.7 kPa 时,流速分布比较均匀,但末级动叶出口流线有向流道顶部偏转的趋势;背压进一步提高至 12.7 kPa 时,流线分布均匀性明显变差,根部和中部流线向顶部偏转,挤压顶部流线,导致顶部流速明显高于根部。整体来看,背压在 3.7 kPa~12.7 kPa 范围内,子午面未出现明显的局部旋涡,说明该机组的变背压特性较好。

由于背压主要影响末级子午面流场,因此进一步分析不同背压下末级静、动叶壁面流线分布情况,如图7所示。随着背压变化,末级静叶壁面流线分布变化不大,整体流线分布非常均匀,末级动叶壁面流线分布变化较大。背压为6.7 kPa时,动叶

壁面流线分布比较均匀;背压降低至 3.7 kPa 时,壁面流速略有增加,流线分布仍比较均匀;背压增大至 9.7 kPa 时,流速降低导致附面层增厚,流体动能无法抵消壁面摩擦或曲率变化带来的扰动,壁面流线分布均匀性变差,叶片中部靠近出汽侧出现小范围脱流,局部损失增加;背压进一步增大至 12.7 kPa 时,脱流区由叶片中部发展至顶部,并且与顶部二次流互相影响,产生局部旋涡,导致损失增加。

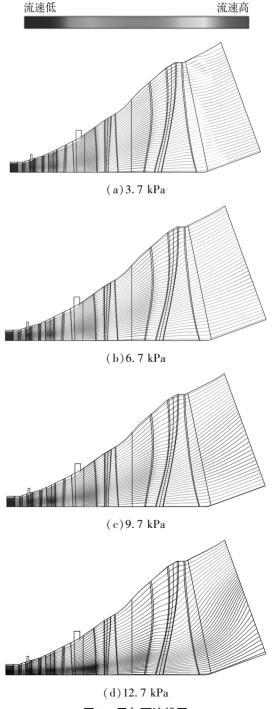


图 6 子午面流线图

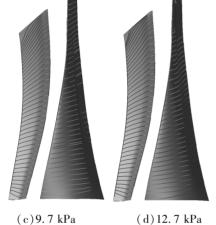
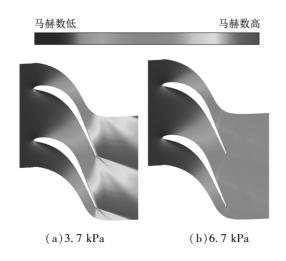



图 7 末级叶片壁面流线图

由于背压主要影响末级动叶壁面流线,因此进一步分析不同背压下末级动叶 B2B 截面马赫数分布,如图 8 所示。随着背压降低,容积流量增大,动叶域内流速逐渐提高,尤其是背压降低至 3.7kPa时,叶片出口出现明显的高马赫数区,激波强度和影响范围明显增加,导致末级叶片效率降低。

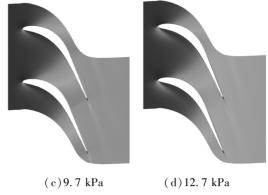


图 8 末级动叶 B2B 截面马赫数云图

综上,背压降低导致末级动叶内流速增加,激 波损失增加,末级效率降低;背压提高导致末级动 叶内流速减小,流场均匀性变差,局部损失增加,末 级效率也降低。

4 背压对特征参数影响

图 9 为不同背压下末级反动度沿叶高的变化。反动度定义为:

$$\Omega = \frac{h_{\rm in} - h_{\rm blade,s}}{h_{\rm in}^* - h_{\rm out,s}} \tag{3}$$

式中:

 Ω 为反动度:

 h_{in} 为入口静焓;

 $h_{\text{blade.s}}$ 为动叶出口等熵焓。

除根顶部受二次流影响外,反动度沿叶高近似 呈线性增长。随着背压提高,反动度逐渐降低,根 部率先出现反动度过低的问题,进而导致动叶域内 汽流轴向流动受阻,引发上述子午面流线向顶部偏 转的现象。

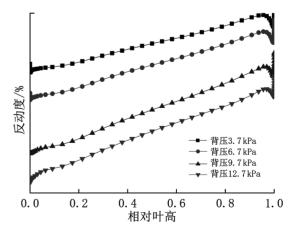


图 9 末级反动度沿叶高分布

東方電氣評論 2025.9.25

图 10 为出口马赫数沿叶高的分布。随着背压提高,出口平均马赫数逐渐降低,背压为 3.7 kPa~9.7 kPa时,出口马赫数沿叶高分布规律接近,背压继续提高至 12.7 kPa时,根顶部马赫数明显降低,中部马赫数略有降低。出口马赫数越高,余速越高,造成的余速损失也越大。

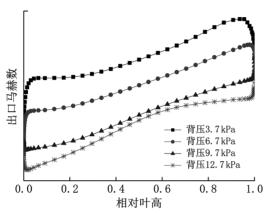


图 10 出口马赫数沿叶高分布

图 11 为排汽角沿叶高的分布。以背压为 6.7 kPa 时为基准,背压降低至 3.7 kPa 时,根部和中部排汽角略有降低,但顶部排汽角出现明显的波动,平均排汽角偏离最佳值约 10°;背压提高至 9.7 kPa 时,排汽角明显增大,尤其是中部,排汽角沿叶高呈抛物线分布,平均排汽角偏离最佳值约 30°;背压进一步提高至 12.7 kPa 时,根部和中部排汽角进一步增大,顶部排汽角略有增加。排汽角偏离最佳值会导致排汽缸静压恢复系数降低,影响余速利用率。

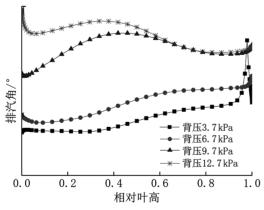


图 11 排汽角沿叶高分布

综上,背压变化导致末级反动度变化,影响末级内流场分布,进而改变末级叶片效率。背压变化导致出口马赫数和排汽角变化,影响余速大小和余速利用率,进而改变低压缸效率。

5 结论

为了从机理上揭示背压变化对超超临界汽轮 机经济性的影响,对东汽研制的某机组低压缸进行 了变背压运行特性研究,并与某国外同类型机组对 比,得到以下结论:

- (1)背压变化对末级效率影响较大,对前面级次效率几乎没有影响,背压为 6.7 kPa 时,末级效率最高,背压偏离最佳值越远,末级效率越低;
 - (2)东汽机组变背压运行特性优于国外机组;
- (3)背压降低会导致末级动叶内激波损失增加,背压提高会导致末级动叶内流场均匀性变差;
- (4) 背压变化会导致出口马赫数和排汽角变化,影响余速大小和余速利用率,进而改变低压缸效率。

参考文献:

- [1] 魏先平, 范华, 杨明, 等. 600 ℃/620 ℃二次再热超超临界机组 高温部件用材[J]. 东方汽轮机, 2016(1):50-54+62
- [2] 王建录,张晓东.超超临界二次再热汽轮机发展综述[J].东方 汽轮机,2016(1):1-6+14
- [3] 翟璇,侯明军,袁永强,等. 超 50 %效率的 630 ℃等级燃煤机组 关键技术研究[J]. 东方汽轮机,2021(4):35-40
- [4] 黄瓯,彭哲瑛.700 ℃高超超临界技术的经济得益分析[J]. 热力透平,2010,39(3);170-174+220
- [5] 包劲松,秦攀,楼可炜,等. 改进型 1 000 MW 汽轮机变背压热力特性试验研究[J]. 中国电力,2018,51(4):81-88
- [6] 李海涛,宁国睿. 背压变化对国产 600 MW 汽轮机组经济性与安全性的影响[J]. 中国电力,2007(9):73-75
- [7] 韩平. 凝汽机组背压变化对汽轮机功率的影响[J]. 集成电路应用,2023,40(6):222-223
- [8] 杨海叶. 背压变化对汽轮机热经济性的影响[J]. 机械管理开发,2017,32(7);16-17

一种大型水轮机筒形阀改造的加工方法

邱俊程1 胡祥杰1 龙超1 刘世国1 苏小文2

1. 东方电气自动控制工程有限公司,四川 德阳 618000; 2. 德阳利诚机械有限公司,四川 德阳 618000

摘要:为提高大型水轮机进口筒形阀改造加工效率,减轻加工难度,同时保证各部零件装配的精度要求,本文提出一种筒形阀 改造加工方法。通过改进加工工艺、设计专用辅助工装夹具结合工艺参数的优化,实现了关键配合面的自动化加工,在保证 筒形阀装配的尺寸精度与形位精度的同时,极大简化加工的流程、缩短改造周期,减少了传统依赖高技能人工的刮研作业量, 成功解决了大型薄壁水轮机进口筒形阀结构改造现场加工的技术难题。

关键词: 筒形阀: 加工工艺: 尺寸精度: 形位精度: 现场加工

中图分类号:TH162

文献标识码:A

文章编号:1001-9006(2025)05-0044-05

A Processing Method for the Modification of the Cylindrical Valve of A Large-scale Hydraulic Turbine

QIU Juncheng¹, HU Xiangjie¹, LONG Chao¹, SU Xiaowen²

(1. Dongfang Electric Automatic Control Engineering Co., Ltd., 618000, Deyang, Sichuan, China;

2. Deyang Licheng Machinery Co., Ltd., 618000, Deyang, Sichuan, China)

Abstract: In order to enhance the processing efficiency of large-scale hydro turbine inlet spherical valve modification and reduce the processing difficulty, while ensuring the assembly accuracy of various components, this paper proposes a modification processing method for spherical valves. By improving the processing technology, designing special-purpose auxiliary fixtures and optimizing process parameters, the automated processing of key mating surfaces is achieved. This method ensures the dimensional and positional accuracy of spherical valve assembly. At the same time, it greatly simplifies the processing procedure, shortens the modification cycle, reduces the traditional reliance on high-skilled manual scraping work, and successfully solves the technical problem of on-site processing of structural modification of large-scale thinwalled hydro turbine inlet spherical valves.

Key words: tubular valve; processing technology; dimensional accuracy; geometric accuracy; on-site processing

水轮机是把水流的能量转换为旋转机械能的动力机械,广泛应用于水力发电站^[1]。在水轮机调速系统故障时,进水阀门可以紧急切断水流,防止机组发生飞逸事故。筒形阀作为水轮机进水阀门的一种,是布置在水轮发电机组活动导叶与座环固定导叶之间的一个过流部件,其上布置有多个接力器,通过操作接力器,控制阀门的开启与关闭。目前,国内外大部分较早投运的进口筒形阀水电机组

已逐步进入机组改造期,机组筒形阀的接力器与筒体安装方式为螺纹连接,装配前需要先行装配接力提升杆,将其与筒体螺纹安装处旋紧,再基于接力器提升杆位置完成接力器剩余部件安装工作,最后使用定位销进行固定。在进行拆除作业时,也需要将其他部件全部拆除后,再将接力器提升杆旋出。因该连接结构所产生的安装、维护成本和难度非常大,对该结构重新进行改进设计,通过将其改造成

收稿日期:2024-05-10

作者简介:邱俊程(1990—),男,2012 年毕业于攀枝花大学机械设计制造及其自动化,本科,工程师。现工作于东方电气自动控制工程有限公司,主要从事机械制造工艺等方面工作。

超级螺母结构,设计接力器提升杆轴阶梯轴,把接力器提升杆插入筒形阀筒体通孔内,通过与超级螺母和超级垫片将提升杆连接把紧,实现筒体与接力器提升杆固定,同时超级螺母处设置有一圈超级螺钉,可精确控制力矩,使得接力器杆与筒体的连接固定方式更为稳固可靠,如图1所示。

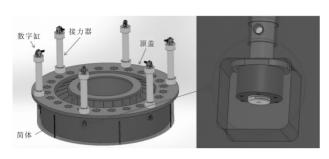


图 1 超级螺母结构

结构改进后,各零件需要满足更高的尺寸精度与形位精度要求,少量加工误差都会影响其装配,进而影响到正常运行和性能发挥^[2]。针对此结构改造加工场景,本文从工程应用角度提出了一种大型水轮机筒形阀改造加工方法,通过改进加工工艺、设计专用辅助工装夹具结合工艺参数的优化,成功解决了水轮机进口筒形阀结构改造现场加工的技术难题。

1 筒形阀加工

在机组改造工程实践中,面临空间约束条件、 多工序并行作业以及工期紧迫等现实挑战,传统筒 形阀整体吊装外运至大型设备加工的常规方案难 以实施,如图 2 所示为筒形阀改造现场。本次采用 就地加工技术方案,在检修平台完成全流程加工作 业,针对局部腐蚀难以加工的区域,也摒弃传统高 技能的手工刮研工艺,创新性提出基于机械冷加工 的各类工艺方法。

(a)改造现场

(b)筒形阀结构

图 2 筒形阀改造现场

1.1 技术要求

接力器提升杆与筒形阀安装固定后的垂直度是筒形阀安全、顺利运行的一项重要的参数,其主要通过接力器下法兰与顶盖法兰接配面、接力器提升杆阶梯轴与筒体上平面的接配面来保证,其均为重要平面,对其水平度、平面度以及平面配合质量要求较高。根据工程的项目经验,要求接力器下法兰与顶盖法兰接配面的水平度不超过 0.06 mm/m,并保证六个接力器提升杆阶梯轴与筒体上平面的接配面的水平度与其基本一至且不超过 0.06 mm/m,要求二者平面度均不超过 0.1 mm/m。

现国内某大型水电站筒形伐改造项目,需要对筒体外圆轴向加工 6 个窗口,尺寸为 180 mm×180 mm,深度约为 120 mm,方孔四角处为 R20 mm 的圆角,材质为 Q345R,窗口四周与筒体内外壁加工焊接坡口,最后用装焊封板进行封口,如图 3 所示,要求以接力器提升杆阶梯轴与筒体上平面的接配面为基准,保证加工的窗口的上平面与其的平行度与平面度不超过 0.1 mm/m。同时还需根据技术要求,钻通接力器提升杆筒体处通孔,钻孔直径需大于提升杆底部螺纹直径,小于机组原有配合孔尺寸。要求以原有机组安装孔为基准,保证需改造加工孔与其同轴度不超过 0.1 mm。

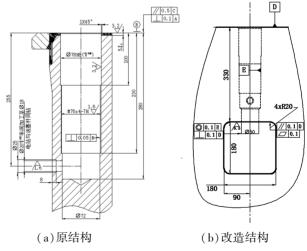


图 3 筒形阀改造结构图

1.2 工艺流程

工艺流程为:准备阶段—筒形阀筒体预放置— 筒体找平—钻镗设备安装—粗镗孔—铣削设备安 装—铣方形孔—筒体上平面钻镗设备安装—钻接 力器安装孔—镗接力器提升杆接配面—加工顶盖 法兰接力器接配面—安装接力器—检测接力器各项垂直度指标。

1.3 筒体窗口加工

在加工之前,需要对简体的水平度进行调整,以保证加工过程中对尺寸精度与形位精度的控制^[3]。首先在简体下方均匀布置 6 个千斤顶,根据简形阀简体加工装配图在简体组装平台上均匀布置 6~8 个适当高度的钢支墩,并在每一个钢支墩上布置一对斜楔,然后使用油石等对简体的上平面原已加工面进行清理打磨,为后序找正提供基准面,最后在加工窗口位置的简体上平面布置 6 个水平测量点,且尽量均匀分布在接力器安装处。先通过初调支墩和斜锲,使所有斜锲上平面水平度保持在 2 mm/m 以内,再调整千斤顶,利用框式水平仪检查简体上平面,保证总体水平度控制在 0.06 mm/m 以内,如图 4 所示。

(a)水平度检测

(b)油石研磨

图 4 水平度调整

为了保证接力器安装后的垂直度要求,同时也要保证超级螺母安装上平面与接力器提升杆阶梯轴接配面的平行度,现场根据工况设计专用工装将加工设备固定在简体上。在安装固定前,需要在简体内壁将所需加工6个窗口位置进行划线,并标记接力器提升杆连接孔中心线位置,完成划线工作后,再将专用工装固定于简体上,保证其大致水平与垂直,然后安装设备,如图5所示。

使用带垂直度测量电子水平仪对设备工作导轨平面进行初步测量,根据测量数据计算需要的调整量,再通过紧定螺钉配合垫块调整工装,使设备工作导轨平面垂直度和水平度控制在 0.04 mm/m以内,并通过千斤顶配合结构梁工装进行再次加固

处理,确保加工过程的安全与精度。

(a) 钻镗工装夹具

(b) 铣削工装夹具

图 5 简体窗口加工专用工装夹具

本次加工设备为便携式机床,先采用钻φ60 mm 孔与镗削φ178 mm 孔的方式快速开粗去除加工余量,再使用φ40 mm 大 3 齿立铣刀,通过已加工平面及工件进行对刀,每次吃刀不大于 1 mm,并保证一定的铣削速度,确保加工精度,按刀轨程序逐层进给至指定切深进行循环加工,最后按要求完成 180 mm×180 mm 窗口的铣削,同时根据焊接要求进行倒角。加工过程应使用合理工艺参数进行切削,同时做好加工冷却工作。为保证铣削精度与效率,此次铣削需充分计算切削要求,设计选择合适的机床功率及刚性,并考虑刀具伸出长度,选择刚性足够的刀具。

1.4 接力器安装通孔及台阶加工

简体接力器提升杆阶梯轴处接配面因机组长期浸泡,表面有不同程度的锈蚀,且与超级螺母上平面有平行度要求,若全部依靠工人手工刮研打磨非常费时费力,并且对工人的技能水平也有很高要求。为了降低作业难度,保证效率,此次设计了顶扣式工装固定与简体上表面,如图 6 所示。先将该专用工装和设备用紧固件和垫块固定于简体上,将划针固定于设备刀杆处,用划针对原简体上接力器提升杆配合孔进行初找正对中,再通过调整双头螺柱配合水平仪对专用工装上设备导轨工作平面进行垂直度和水平度调整,将水平度与垂直度控制在0.02 mm/m 以内,同时再保证预钻接力器安装通孔与原配合孔同轴度在0.02 mm 以内,完成调整后固定紧定螺栓,调整过程需反复确认上述形位尺寸,直至符合要求。

图 6 接力器提升杆配合面加工专用工装夹具

使用麻花钻将接力器预安装孔钻通,再更换使用镗刀对接力器提升杆阶梯轴处接配面进行镗削,要求镗削外圆尺寸应大于阶梯轴配合尺寸小于筒体壁厚尺寸,深度根据现场工况一般选择1~2 mm,将锈蚀表面加工平整,并要求表面粗糙度达到 Ra 6.3。该台阶与接力器安装通孔需一次装夹内完成加工,保证垂直度控制在 0.1 mm/m 以内。

1.5 接力器下法兰与顶盖法兰接配面加工

为了保证接力器安装后提升杆的垂直度要求,接力器下法兰与顶盖法兰接配面同样也是重要平面,同样也会存在不同程度若的锈蚀,但情况较简体时好,现场可采用刮研法将上平面修磨平整,若修磨工作量大,也可采用内胀式法兰端面加工机进行加工,将加工面水平度控制在 0.06 mm/m 以内,然后完成接力器下法兰与顶盖法兰接配面的加工工作。

2 加工结果

为了有效控制简体窗口加工过程引起的简体 尺寸变形,保证简体尺寸精度,本次改造工程加工 方式采用机械冷加工的方式,并严格控制切削用量 进行加工,控制简体的加工变形。在水平调整完成 后,使用内径千分尺测量简体圆度并记录,测量的 位置需进行标记,为保证加工前后测量基准大致一 致。后续每加工完成一个窗口后,都需要对简体尺 寸进行测量,确认简体的尺寸及变形情况并记录, 必要时调整切削用量。在整个加工完成后,对简体 圆度尺寸进行最终测量,简体尺寸变化量满足装配 精度要求,如表1、表2所示。

图 7 简体直径测量

表 1 加工前后筒体上沿直径测量数据

v	Y	1	v	v

		1111	11
序号	加工前测点直径	加工后测点直径	
1	6 246.73	6 246.72	_
2	6 245.87	6 245. 56	
3	6 243.11	6 242.63	
4	6 239. 82	6 239. 28	
5	6 236. 93	6 236. 32	
6	6 233. 86	6 233.65	
7	6 231.32	6 231. 14	
8	6 229. 22	6 229. 58	
9	6 227.98	6 228.45	
10	6 227.12	6 228. 18	
11	6 229.54	6 228. 94	
12	6 231.06	6 230. 36	

表 2 加工前后筒体下壁直径测量数据

m	m

			111111
序号	加工前测点直径	加工后测点直径	
1	6 313. 87	6 313. 17	
2	6 309.99	6 309. 14	
3	6 302.43	6 302. 16	
4	6 301.34	6 301.95	
5	6 299.94	6 300. 13	
6	6 299. 15	6 299. 34	
7	6 298.76	6 298.87	
8	6 300.16	6 300. 53	
9	6 301.75	6 301.32	
10	6 303.97	6 304. 22	
11	6 308. 26	6 308.78	
12	6 310. 98	6 310.77	

本次水轮机进口筒形阀结构改造现场加工情况如图 8 所示。

为保证筒形阀安全顺利运行,在接力器的安装过程中需要保证垂直度要求^[4-5],采用挂钢琴线的方法检查各种情况接力器提升杆的垂直度^[6],如图 9 所示。安装垂直度要求为 0.2 mm/m 以内,本次测量上下测点间距为 1 m,各接力器具体测量数据见表 3,最大误差为 0.19 mm/m,达到安装规范要求。

(a) 筒体窗口

(b)接配面

图 8 加工情况

(a) 周向

(b) 径向

图 9 挂钢琴线检查

表 3 接力器提升杆垂直度测量数据

	763 127) HH 1/C/1 11 =		mm mm
序号	周向上	周向下	径向上	径向下
1	11. 15	10. 96	6. 02	5. 88
2	11.47	11.52	4. 95	4. 93
3	9. 20	9.18	3. 24	3. 13
4	7. 27	7.31	4. 60	4. 69
5	7. 20	7.38	5. 88	6.02
6	5.76	5. 68	6. 60	6. 79

3 结语

本文针对大型水轮机进口筒形阀改造中存在 的场地局限、加工精度控制难、人工修配周期长等 核心问题,提出了一种筒形阀改造加工方法。通过 改进加工工艺、设计专用辅助工装夹具结合工艺参 数的优化,实现了关键配合面的自动化加工,在保 证筒形阀装配的尺寸精度与形位精度的同时,极 大简化加工的流程、缩短改造周期,减少了传统依 赖高技能人工的刮研作业量,成功解决了大型薄 壁水轮机进口筒形阀结构改造现场加工的技术难 题,为行业内水电站改造提供可量化、可复制的技 术范式。

参考文献:

- [1] 罗兴锜,朱国俊,冯建军.水轮机技术进展与发展趋势[J].水 力发电学报,2020,39(8):1-18
- [2] 田仁斌,彭晶晶,苏纪成,等. 水轮发电机组筒形阀检修工艺优 化及应用[J]. 水电与新能源,2024,38(11):35-37+40
- [3] 付有泰. 苗尾电站水轮机筒阀安装工艺研究[J]. 水电站机电 技术,2018,41(9):48-50
- [4] 周敏利,陆丽萍.水电站进水主阀安装及调试——筒形阀[J]. 云南水力发电,2023,39(9):289-294
- [5] 邱崇俊. 水轮机筒形阀安装调试技术总结[J]. 云南水力发电, 2021,37(5):123-126
- [6] 王轩,白刚,周若愚.雅砻江锦屏一级水电站筒形阀安装工艺 研究[J]. 人民长江,2016,47(7):72-76

变染系统测试平台及测试方法研究

杨忾 李雨蒙

东方电气风电股份有限公司,四川 德阳 618000

摘要:变桨系统的驱动能力直接关系着风电机组的发电性能和安全,为验证变桨系统的性能,需要通过试验平台对其进行试验。本文分析了传统对拖试验平台在变桨系统试验过程中存在的不足,设计了一种新型试验平台,以双驱变桨系统为例设计试验方案,并验证了试验平台和试验方案的可行性。

关键词:变桨系统; 试验平台; 试验方法

中图分类号:TM614

文献标识码:A

文章编号:1001-9006(2025)05-0049-05

Research on Testing Platform and Testing Method of Pitch System

YANG Kai, LI Yumeng

(Dongfang Electric Wind Power Co., Ltd., 618000, Deyang, Sichuan, China)

Abstract: The driving capacity of the pitch system is directly related to the power generation performance and safety of WTGs. In order to simulate the performance of the pitch system, a test platform needs to be established. This paper analyses the deficiencies existing in the traditional back-to-back test platform during the testing process of the pitch system, designs a new type of test platform, takes the dual-drive pitch system as an example to design a test scheme, and verifies the feasibility of the test platform and the test method.

Key words: pitch system; test platform; test method

变桨系统是风力发电机组的核心控制系统,其驱动能力在风机的整体运行中起着至关重要的作用[1-2]。在极端工况下,若变桨系统驱动能力不足,就可能导致飞车甚至倒机等灾难性的后果。为保证风电机组的发电性能和安全,需要对变桨系统的性能进行全面且精准的测试。开展科学的试验,前提是建立适宜的测试平台并采用恰当的测试方法,需要设计一个能够模拟变桨系统全工况的测试平台来准确评估变桨系统的性能表现,为变桨系统伺服驱动器、变桨电机等核心部件的选型计算、载荷校核提供依据,并指导系统的设计优化。

变桨系统主要有液压变桨^[3]和电动变桨两个 技术路线,在国内电动变桨系统应用较为广泛。因 此,本文主要对电动变桨系统性能测试平台及测试 方法进行了研究,旨在提升变桨系统试验的准确性 和科学性。

1 传统测试方案

对于电动变桨系统, GB/T 32077—2015, NB/T 31018—2018 等标准^[4-5] 明确规定变桨系统试验应在与实际条件相同或者等效的运行条件下进行, 并给出了试验台示例如图 1 所示。该对拖试验台由被测变桨系统、加载系统、扭矩测量系统、上位机等组成。上位机控制加载系统施加特定力矩与变桨系统同轴对拖以完成变桨系统的相关试验^[6-8]。

在变桨系统发展早期,这种传统的试验方法能够基本满足变桨系统设计和测试的需求,随着行业的不断发展,变桨系统设计的精细化程度不断加

收稿日期:2025-02-08

作者简介: 杨忾(1992—),男,2015 年毕业于上海交通大学电气工程与自动化专业,本科,高级工程师。现任职于东方电气风电股份有限公司风电研发设计院,从事风电机组变桨控制系统研发工作。

深,余量减小,这种传统对拖试验方案的不足逐渐 凸显,主要体现在以下三个方面。

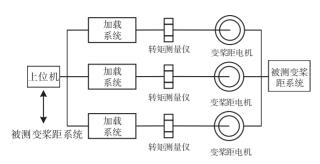


图 1 变桨对拖试验台

1.1 工况模拟不准

变桨系统在实际的风力发电机的轮毂中通过 变桨减速器与变桨轴承连接,通过驱动变桨轴承旋 转来实现变桨距,如图 2 所示。

图 2 变桨系统传动轴系

变桨系统长期处于旋转、振动的恶劣工作环境中,其驱动能力除了受伺服驱动器、变桨电机、控制算法等内部因素影响外,变桨减速器、变桨轴承等机械传动轴系等外部条件同样会对变桨系统的性能表现产生影响。但是传统的对拖试验平台完全忽略了传动轴系的影响,仅对变桨系统进行了测试,因此实验室的工况模拟测试结果与风机实际运行结果存在较大偏差。

1.2 加载手段单一

对于图 1 所示的对拖加载平台,加载系统逆变器大多仅能通过操作面板施加特定的载荷,用于对变桨系统进行规定载荷的测试,这种测试方法可以用于测试变桨系统在额定力矩和设计最大力矩条件下的测试,但变桨系统在实际的服役过程中,其载荷是随风力的大小以及叶片的空间位置实时变化的,这种传统的对拖加载平台无法进行动态力矩

加载以模拟变桨系统在实际工况下的性能表现。

1.3 无法满足双驱测试需求

随着风电机组大型化进程不断发展,机组容量 迅速攀升,目前出现了一种新型双驱电动变桨系 统,由两个变桨电机分别通过变桨减速箱连接到变 桨轴承,共同驱动变桨轴承转动以控制风机叶片 变桨。

对于双驱变桨系统,基于传统的对拖试验方式,双驱电动变桨系统的性能测试只能通过变桨电机与加载电机一对一的连接方式进行,这种加载方式无法模拟双驱变桨系统的真实工况。一方面,由于各个加载电机之间相互独立,即使设定相同的力矩,加载电机之间的差异仍会存在一定偏差,无法保证双驱变桨的平均加载。另一方面,双驱变桨系统两个变桨电机之间实际是一种基于变桨轴承的类刚性连接,对拖加载方式则忽略了这种类刚性连接情况下两个变桨电机的输出动态平均过程和相互影响,无法真实反映双驱变桨系统的同步性能和驱动能力。

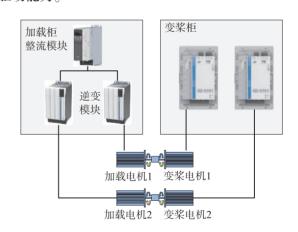


图 3 双驱变桨系统对拖试验方案

2 试验平台设计

为科学、准确的模拟变桨系统的实际工况,本 节设计了新型变桨系统试验平台,平台主要包含对 拖试验平台、动态加载平台和变桨测试平台三个 部分。

2.1 对拖试验平台

变桨对拖试验台主要包含台架本体、对接支架、加载电机、扭矩传感器、被测变桨电机几个部分,其实物结构如图 4 所示。

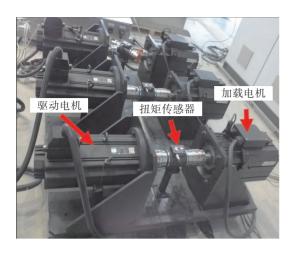


图 4 对拖试验台

对接支架通过螺栓固定到台架本体上,并能保证加载电机和被测变桨电机与对接支架连接后同心度可达到 0.1 mm,加载电机和被测变桨电机分别通过联轴器与扭矩传感器连接。与传统对拖试验平台的作用不同,在本节所设计的试验平台中,对拖试验台主要用于加载力矩的标定。

2.2 动态加载平台

动态加载平台用于给加载电机施加力矩,相较 于传统的加载平台,加载平台具备以下特点:

(1) 动态模拟载荷序列

动态加载平台采用汇川技术的 MD880 型整流器和 MD810 型逆变器。MD810 变频器有两种运行模式,一般在变桨系统的性能测试中将其设置为力矩模式。MD810 与控制 PLC 之间通过 CANOpen 总线进行通讯,控制 PLC 可以将风电机组的实际载荷数据通过控制软件下发给 MD810 实时调节加载电机输出力矩,以测试变桨系统在风机实际载荷序列作用下的动态响应。

性1床用位置	0"		2年中四里	0*	1031	本角位置	or		GH 5.5		气风电股份	有限公司	
11 W 25 1 No 12 1 1976 -	7,05Nm	- 1	9 Q19216 (B199)	-14.00Nm									
	HOCOME	20802200	10020000	加税公联会	研NIT 於	由來與用	位級化金	都の継にお	位条数据	駅の観念機			
送大乗「松利							送大阪口担何						
Feature	(F-0-26110)	-ioma	0		981A.HE	BX .	FADRIST	SE & CEZINO	oma.	0		STELL PLANE.	
	SEN131	M-BW	+ 5		- 5			(TERMINA	-50	+5		-5	
KENNET													
100000000		31,210		379070	E#2		31°C		tretterst (III)	R	30.9°C		
HORST ALZERS		30.8°C		10 mag	2.00		32°C		179251 188		12°C		
送太陽市温水		311C											
CROS-MAR													
NAME OF		OV		473.75	4		OHE		HEPSHELD		08		
WIDIDE		Clicw		DEVENCE	92		0.00		質け代替		0.00		
MITTER STREET		OV		THE PERSON	ex .		U		(7 W IS 1 W)	PRINT	OV		
送北東下級州地区		CN		建次 科	TABITINGS.		nA.		MISSER THOSE	10300	Clicur		
西京新工品行政 市		OHA		228	I WATER		ORpm		PER LINE	179%	Officer		
送水闸 1 祝舊秋地		CEVITS		建会 器	田母が中田		πv		送灸彈耳輸出	2340	OV		
大学器目物出物法		OA		SER.	E tereston		Okw		COBUSE	ENDAS	OHz		
建金属用的机构		Oftom		10.00	Telement		0Nm		PORTOR	MACON.	CNIm		

图 5 加载平台控制软件

(2) 动能回收

在传统的对拖试验平台中,加载电机工作在力 矩模式,变桨电机响应主控系统指令拖动加载电机 运行,在这种模式下,变桨电机工作在电动机模式, 而加载电机工作在发电机模式,由加载电机发电产 生的电能一般通过泄放电阻消耗,一方面会浪费大 量能源,另一方面泄放电阻长时间工作温度会急剧 升高,存在一定的故障和安全隐患。因此本加载平 台在设计时共用了加载和变桨的电气回路,且 MD880 可以将加载电机发电产生的电能回馈到电 网,同工况下,动能回馈式的加载平台试验能耗仅 为电阻制动式的 20%,大幅减少电能消耗。

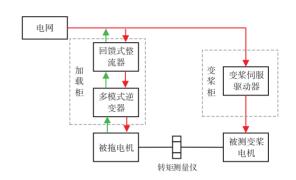


图 6 动能回馈电气回路

2.3 变桨测试平台

为准确模拟变桨系统特别是双驱变桨系统的 实际工况,设计了如图 7 所示的变桨测试平台。在 结构方面,加载电机通过加载减速机与轮毂连接, 变桨驱动电机通过驱动减速机和驱动支架与轮毂 机械连接。在电气方面,加载电机与动态加载平台 中的逆变器 MD810 连接,变桨电机与变桨系统中的 伺服驱动器连接。

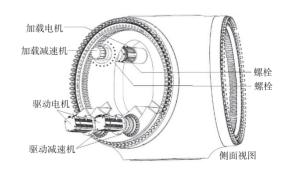


图 7 变桨测试平台

基于图 7 所示的变桨测试平台,加载电机通过加载减速机施加力矩于变桨轴承,准确模拟叶根载荷,可以验证变桨系统在完整传动轴系下的性能表现,特别是在双驱变桨系统的同步性能及驱动能力方面相较于传统的对拖试验方式准确性大幅提升。

3 试验方案设计

本节将以双驱电动变桨系统为例,基于第2节 所设计的试验平台,设计双驱变桨系统的同步性能 及最大驱动能力测试方案以验证试验平台的可 行性。

3.1 最大力矩测试方案

以某型风电机组为例,假设要求变桨系统最大输出力矩>500 N·m,本小节将设计方案验证变桨系统输出力矩满足设计载荷要求。

3.1.1 参数计算

变桨测试平台机械参数如表1所示:

表 1 变桨测试平台机械参数

变桨轴承大齿数	135
减速机驱动齿齿数	15
加载减速机(7)速比	196. 46
加载轴总速比	1 768. 1
驱动减速机(5)速比	193. 988
驱动轴总速比	1 745. 9
机械传动效率	0.91

若变桨电机输出扭矩为 500 N·m,结合表 1,考 虑机械效率 0.91,折算至叶根载荷为:

 $500 \times 1745.9 \times 0.91 = 794385 \text{ N} \cdot \text{m}$

若要等效叶根载荷为794 385 N·m,则加载电机需要输出的加载力矩 T_{set} 为:

 $T_{\text{out}} = 794385 \div 1768. \ 1 \times 0.91 = 408.9 \ \text{N} \cdot \text{m}$

即在图7中所示的加载电机(6)中加载>409 N·m,要驱动轴承转动,变桨系统输出的最大力矩则>500 N·m。

因此在本方案中,考虑 10 N·m 余量,将加载电机的输出力矩 T_{sel} 设定为 420 N·m_{\odot}

3.1.2 加载力矩标定

在图 4 所示的变桨电机对拖试验台中,采用北京三晶 JN338-700A 型扭矩传感器,用于测量对拖试验台的实际加载力矩。标定过程分以下几个步骤:

步骤 1:将加载电机与扭矩传感器、驱动电机通过联轴器依次完成机械连接;

步骤 2:将动态加载平台逆变器 1 设定为驱动模式,与之连接的电机即为驱动电机;将逆变器 2 设定为力矩模式,与之连接的电机即为加载电机,扭矩传感器输出连接示波器;

步骤 3:在图 5 所示的加载平台控制软件中,将 逆变器 2 的加载力矩设定为 420 N·m,控制逆变器 1 驱动电机转动,此时读取示波器数据;

步骤 4:调节逆变器 2 的加载设定力矩值,直至示波器读取到的扭矩传感器所测力矩为 420 N·m,并记录此时的加载设定力矩 T。

标定过程重复三次,取三次设定值的平均值为 T_{set} ,此时可认为,加载力矩设定为 T_{set} 时,电机的实际输出力矩为 420 N·m,排除测量误差。

3.1.3 最大驱动能力测试

在图 7 所示的变桨测试平台中,将加载电机与动态加载平台的逆变器 1 连接,并通过控制软件将逆变器 1 的加载值设定为 $T_{\rm set}$,将被测变桨系统的变桨电机与驱动减速机连接,通过模拟控制器,控制变桨系统以额定转速输出。如图 8 所示,变桨系统能够驱动轴承转动且在 3 s 内系统不报出过载故障,则测得变桨系统最大输出力矩>500 N·m。

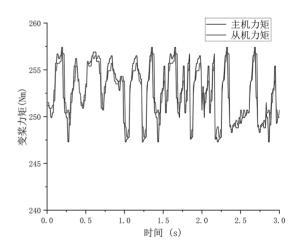


图 8 变桨系统最大输出能力测试

3.2 同步性能测试方案

为验证双驱电动变桨系统同轴双电机的同步性能,按3.1节所述方法将双驱变桨系统的同轴两个电机分别与驱动减速机连接,并将经折算后的满发工况下风机实际载荷序列的加载力矩通过图5所示加载平台控制软件下发给动态加载平台的逆变器1,以实现动态加载模拟风机实际载荷。通过模拟主控制器按实际风机的变桨指令控制变桨系统,测得双驱变桨系统动态同步曲线如图9-10所示,动态力矩偏差不超过5%,主从力矩相关系数超过0.99,同步性能表现良好。

京方電氣評論 2025.9.25

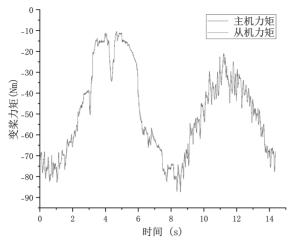


图 9 主从力矩同步曲线

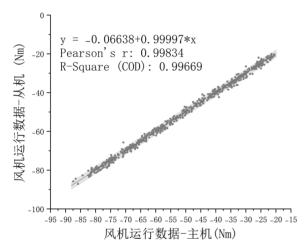


图 10 主从力矩相关系数

4 结束语

本文所述的变桨系统试验平台以及试验方法, 克服了传统对拖式加载平台的一系列不足,能够充 分的模拟变桨系统的实际工况,对变桨系统的性能 进行科学、精准的测试,具有能耗低、准确性高等特 点,能够为变桨系统的设计、选型、试验和载荷校核 提供支撑。

参考文献:

- [1] 叶成城. 兆瓦级风电机组电动变桨距控制系统的研究与实现 [D]. 上海交通大学,2013
- [2] 吴光宇. 兆瓦级风电机组变桨距系统设计[J]. 大电机技术, 2018(4):66-71
- [3] 王绍平,王冰,沈王平,等. 风电机组液压变桨距系统 H∞ 鲁棒 控制策略研究[J]. 机床与液压,2020,48(13):34-40
- [4] 全国风力机械标准化技术委员会(SAC/TC 50). 风力发电机组 变桨距系统: GB/T 32077—2015[S]. 中国标准出版社, 2015
- [5] 风力发电机组电动变桨控制系统技术规范: NB/T 31018—2011 [S]. 2011
- [6] 张子实. 风电变桨对拖试验台改进与控制优化[D]. 燕山大学,2018
- [7] 王鹏, 史伟, 宋忠民, 等. 一种风电机组带载测试方案的研究与 开发[J]. 江苏科技信息, 2021, 38(7): 33-36
- [8] 汪海波,田炜,鲁斌,等. 兆瓦级风电机组电动变桨距系统测试平台设计[J]. 电力系统自动化,2010,34(24):74-77

适用于风电叶片状态监测的光纤 加速度传感器设计与开发

官雪梅! 王裕祥1,2* 蒋恩超! 王立闻! 陈旭东! 彭凡!

1. 东方电气集团科学技术研究院有限公司、成都 611731; 2. 华东理工大学、上海 200237

摘要:大型风力发电机组因其平均发电成本低、输出功率高等优势,正成为陆上和海上风场的热门选择。因此对大型风力发电机叶片监测的需求也与日俱增。振动监测是叶片状态监测的常见手段,但是随着风机高度、叶片长度的增增长,传统的压电式加速度传感器也面临着越来越高的雷击风险。此外,风电叶片低频振动的加速度信号都很微小,而高阻抗的小电荷信号易受干扰。针对上述问题,本文基于悬臂梁结构设计并开发一款适用于叶片状态监测的低频高灵敏度光纤加速度传感器。该传感器结构简单,具有低频响应好、灵敏度、抗雷击、抗电磁干扰等特定,能够有效评估叶片状态,保护叶片安全运行,有望在延长叶片服役寿命和减少后期维护成本等方面发挥重要作用。

关键词:风力发电机叶片;光纤传感器;悬臂梁结构

中图分类号:TN212

文献标识码:A

文章编号:1001-9006(2025)05-0054-07

Design and Development of Fiber-optic Acceleration Sensors for Wind Turbine Blade Condition Monitoring

GUAN Xuemei¹, WANG Yuxiang^{1,2*}, JIANG Enchao¹, WANG Liwen¹, CHEN Xudong¹, PENG Fan¹

(1. DEC Academy of Science and Technology Co., Ltd., 611731, Chengdu, China;

2. East China University of Science and Technology, 200237, Shanghai, China)

Abstract: Large-scale wind turbines are becoming popular for onshore and offshore wind farms due to their low average power generation cost and high output power. But this also puts forward higher requirements on its matching long blades. Vibration monitoring is a common method for blade condition monitoring. However, with the increase of fan height and blade length, the traditional piezoelectric acceleration sensor is also faced with a higher and higher risk of being struck by lightning. In addition, the acceleration signals of low-frequency vibration of wind turbine blades are very small, while the small charge signals of high impedance are easily disturbed. Based on the above background, this paper designs and develops a low-frequency high-sensitivity optical fiber acceleration sensor for blade state monitoring based on the cantilever structure. The sensor has the advantages of simple structure, good low-frequency response, sensitivity, lightning resistance, and electromagnetic interference resistance, which can effectively evaluate the blade state and protect the safe operation of the blade. It is expected to play an important role in prolonging the blade's service life and reducing the later maintenance cost.

Key words: wind turbine blade; optical fiber sensor; cantilever beam structure

收稿日期:2025-06-13

作者简介:官雪梅(1985—),女,硕士,高级工程师。主要研究方向为智能制造,机械系统设计,精密传动、特种传感器。通信邮箱:guanxm@dongfang.com。

王裕祥(1998—),男,硕士。主要研究方向为旋转机械故障诊断,无损检测,一维时序信号处理,可解释深度学习。通信邮箱:wyx13776235740@163.com。

目前风力发电机组正朝着大功率型号趋势迈进^[1],叶片的长度也随之不断增长使得风场建造成本增高,对叶片健康状态进行可靠的监测就显得尤为重要^[2-3],不少学者就叶片状态监测进行了广泛的研究,其中振动监测是一种被广泛采用的叶片监测手段^[4-9]。

但传统加速度传感器在使用过程中会产生电 学信号,通过金属线缆对信号进行传输。即使对传 感器和传输线缆进行屏蔽,在叶片的高空工作环境 中,金属导线仍然有较高的雷击风险。光纤加速度 传感器主要基于干涉仪原理,使用光纤对振动信号 进行传输,光纤线缆和光信号不引雷,可以有效的 降低叶片监测系统的雷击风险。常见的干涉型加 速度传感器有顺变柱体型、膜片型和光纤光栅型 等,顺变柱体型加速度传感器 通常采用橡胶换能器 可实现较高的加速度灵敏度,但是由于橡胶材料易 老化、不耐高温从而限制了其实际应用[10]。光纤光 栅加速度传感器是近年快速发展的一种光纤加速 度传感器,它体积小、灵敏度可调。近年来也有不 少学者开发了各种结构的光纤光栅加速度传感 器[11-15],但这些传感器在平坦频率范围,灵敏度等 方面不能满足叶片状态监测的需求。此外,由于低 频振动的加速度信号都很微小,而高阻抗的小电荷 信号易受干扰; 当测量对象的体积越大, 其测量频 率越低,则信号的信噪比的问题更为突出,应尽量 选用电噪声比较小、低频特性优良的低阻抗电压输 出型压电加速度传感器。

因此,本文设计了一款适用于叶片状态监测的 低频高灵敏度光纤光栅加速度传感器,该设计具有 低频响应好、灵敏度、抗雷击、抗电磁干扰等特性, 能够有效评估叶片状态,保护叶片安全运行,有望 在延长叶片服役寿命和减少后期维护成本等方面 发挥重要作用。

1 传感器原理介绍和分析

1.1 传感器结构设计

本文设计的加速度传感器可以看成是一个带 质量块的弹簧系统,其结构如图 1 所示。

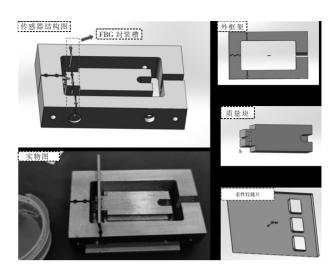


图1 传感器结构

其主要由外框架、柔性铰链、质量块组成,和一个 FBG 组成。其中外框架在满足敏感结构封装、FBG 封装、传感器安装等功能的同时提供支撑及保护作用。线切割槽分别用于安装柔性应变片、光纤光栅 FBG 和阻尼材料。

质量块用于感应加速度,由于本加速度传感器主要应用于叶片监测,其加速度量程较小,需要较大质量的质量块作为驱动。片状的柔性铰链结构作为质量弹簧系统的等效弹簧,同时形成较长的悬臂,利用杠杆结构放大扭矩,使 FBG 上产生更大的拉伸量,提高传感器的灵敏度。

1.2 传感器理论分析

图 2 为传感器的力学模型。片状的柔性铰链结构可以视为悬臂梁,该片状的柔性铰链的绕曲线方程见式(1)。

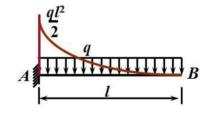


图 2 悬臂梁力学模型

$$Y(x) = \frac{F_1 x^2}{6E_1 I} (3l - x) \tag{1}$$

其中: F_1 为结构末端所受的外力; E_1 为柔性铰链的弹性模量;I 为柔性铰链截面的转动惯量;l 为结构长度。

式(1)中柔性铰链绕曲线方程对x求导得,可得:

$$Y'(x) = \frac{F_1 x l}{E_1 I} - \frac{F_1 x^2}{2E_1 I} \tag{2}$$

在悬臂梁末端处, $Y'(L) = \frac{F_1 l^2}{2E_1 I}, Y(x) = \frac{F_1 l^3}{3E_1 I}$,则

切线槽处的位移 D 可近似为:

$$D \approx Y'(l) d + Y(x) \tag{3}$$

其中 d 为切线槽到质量块底部的距离。展开式 (3) ,得到式(4):

$$D \approx \frac{F_1 l^2}{2E_1 I} d + \frac{F_1 l^3}{3E_1 I} = F_1 \left(\frac{l^2}{2E_1 I} d + \frac{l^3}{3E_1 I} \right)$$
 (4)

考虑光纤的弹性力,光纤的弹性系数为:

$$k = \frac{E_2 A}{s} \tag{5}$$

其中: E_2 为光纤的弹性模量;A 为光纤的截面面积;s 为光纤光栅的栅区长度。则光纤的弹性力可以表示为:

$$F_2 = kD \tag{6}$$

设传感器加速度为 a,质量块重心位置距线槽距离为 r,质量块质量为 m。则可以写出系统的力矩平衡方程如下:

$$ma(r+l+d) = F_2(l+d) + F_1l$$

$$m(r+l+d) a = D(k(l+d) + \frac{1}{(\frac{l^2}{2E_1 l}d + \frac{l^3}{3E_1 l})}$$
(7)

在不考虑系统阻尼的情况下,可以把上式写成:D=Ka;其中D为光纤所受的形变量,K为与结构相关的常数。

通过以上理论分析,当质量块在敏感方向受加速度时,悬臂梁末端受力并产生位移,当悬臂梁末端的位移足够小时,光纤产生的形变量和加速度之间呈线性关系。因此该传感器结构等效于一个单自由度的弹簧质量块系统,质量块连接的悬臂梁为质量块提供刚度,当传感器受外力进行运动时带动质量块进行小幅度运动,此时,光纤的波长发生变化,从而可以获得加速度和波长之间的关系。

2 传感器有限元仿真分析

由前一章的理论分析可知,该结构的加速度传感器可以等效于一个加速度单自由度的弹簧质量块系统,系统的固有频率,灵敏度等和结构参数,材

料特性等直接相关。

由于柔性铰链属于整体结构,结构简单,采用Solid Works 对传感器进行建模,画出三维图,然后导入到ANSYS Workbench 模块下进行分析,如图 3 所示。在分析过程中,柔性铰链片采用 65Mn 退火弹簧钢,弹性模量为 198 GPa,密度为 7 850 kg/m³,泊松比为 0.3,其余结构采用 304 不锈钢。

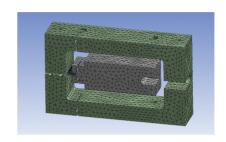
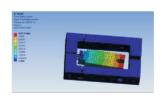
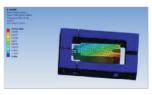



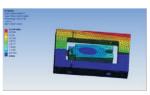
图 3 仿真分析网格划分

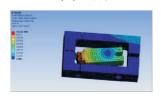
2.1 模态分析


对于加速度传感结构,需要考虑弹性体的固有 频率。当 FBG 加速度传感器的固有频率接近待测 物体的工作时就容易发生共振,使的 FBG 加速度传 感器的振幅达到最大。传感器的工作频率应远离 自身共振频率,这样加速度传感器的实际灵敏度不 会受到工作频率的影响。所以,传感器低阶频率的 确定十分必要。模态仿真分析结果如图 4 所示。通 过仿真分析,可以看到一阶固有频率为 58.02 Hz, 满足叶片状态监测低频 20 Hz 以下的监测需求。

The Mark Control of the Control of t

(a)一阶模态


(b)一阶模态



(c)一阶模态

(d)一阶模态

(e)一阶模态

(f)一阶模态

图 4 模态仿真分析

2.2 静力结构分析

通过使用 SolideWorks 对柔性铰链的静力形变仿真,进一步分析 FBG 传感器的灵敏度,如图 3. 10 所示,当外加加速度为 1 g 时,两封装点之间的相对位移为 9. 25×10⁻⁶ m。当光纤布拉格光栅的封装长度 l=15 mm 时,其有效长度为 14 mm,其所受应变可计算为: $\frac{9.25\times10^{-6}}{0.014}\times10^{-6}=660~\mu\epsilon$ 。由于光纤布拉格光栅的应变灵敏度为 121 pm/ $\mu\epsilon$,在施加的加速度质量为 1 g 时,FBG 的中心波长偏移 800 pm,因此,FBG 传感器灵敏度为 800 pm/g。实际使用过程中通过增加质量块的方式来控制传感器的灵敏度,以满足不同使用场景的检测需求。

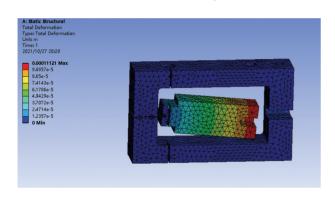


图 5 静力分析结果

2.3 动态仿真

传感器的幅频、相频特性曲线如图 6 所示,可知传感器的固有频率为 146 Hz 且在 100 Hz 以下响应平坦,表明传感器对低频信号有良好的响应。

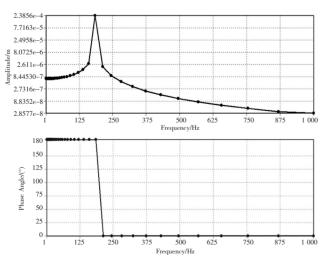


图 6 传感器幅频特性仿真结果

3 传感器测试

图 7 为本文所设计的加速度传感器的内部结构。该传感器内封装有两个光纤加速度传感器。为验证设计的光纤加速度传感器的性能,对其进行实验研究。

图 7 传感器实物

本实验采用的振动台的激励范围为 10~2 000 Hz,最大激励力为 500 N。如图 8 所示,将光纤加速度传感器和一只高精度压电加速度传感器安装在振动台的刚性支架上。其中压电加速度传感器采用东方振动研究所的 INV9821 传感器,传感器线性响应范围 0.5~5 000 Hz,灵敏度 50 mv/g。采用北京东方振动和噪声技术研究所 INV3062-C2 采集仪采集压电加速度信号,设定采样频率 2 000 Hz。光纤解调仪采用 Micron Optics SM130,分辨率小于1 pm,可重复性 2 pm,可同时采集四个通道的光信号,设定采样频率 1 000 Hz。

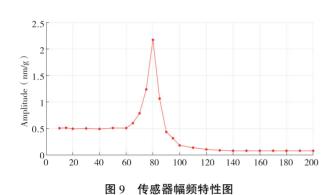



图 8 实验装置

3.1 幅频响应和灵敏度测试

由于本次使用的实验台不能设定固定输出的加速度值,因此使用 INV 9821 传感器搭配 INV

3062-C2 采集仪采集到的压电加速度信号作为振动 台的真实输出加速度值。从 10 Hz 到 200 Hz 以 10 Hz 为间隔设定振动台输出频率。由于在 60 Hz 左右光纤加速度传感器进入共振频率附近,因此在 60 Hz 到 100 Hz 范围内以 5 Hz 为间隔设定振动台 输出频率。如图9所示,以真实输出 g 值为基准,获 得本文所涉及光纤加速度传感器的幅频响应特性, 可以看到在0~60 Hz 范围内,该传感器有较好的幅 频响应特性。该传感器的一阶共振频率在80 Hz到 85 Hz 之间, 低于理论仿真值。在平坦区域内, 该光 纤加速度传感器的灵敏度约为 500 pm/g,略微低于 理论设计值 800 pm/g。

3.2 横向抗干扰测试

在进行幅频响应和灵敏度测试时,同时采集两 个方向即主振动方向和横向方向两个方向的光纤 加速度传感器的输出响应,如图 10 所示,可以看到, 在 0~60 Hz 和 100~200 Hz 范围内, 横向相应不大 于主响应强度的 1/10。在在 60 Hz 到 100 Hz 范围 内,横向相应不大于主响应强度的 1/5。产生上述 的结果的原因可能是由于激励频率进入了传感器 的共振频率范围,导致横向响应强度变强。

4 传感器应用

为验证初步验证该光纤加速度传感器在工程 应用现场的效果,通过在某型号风机叶片疲劳试验 现场部署一套基于光纤加速度传感器的叶片状态 监测系统,开展系统功能验证。传感器部署于试验 叶片内部,其中加速度传感器安装于叶片长度约 1/ 3处的腹板上,图11为实验现场。

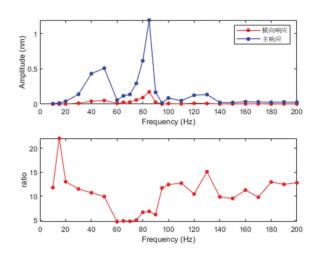


图 10 MACNN 模型诊断结果混淆矩阵

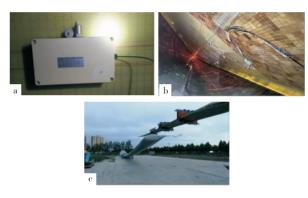


图 11 叶片疲劳试验图

固定在叶片远端的电机带动摆锤转动,摆锤的 离心力作为系统数据,叶片收强迫激励。在叶片疲 劳寿命实验的过程中进行信号采集工作。图 12 为 现场采集的光纤加速度时域信号和频域分析结果, 加速度信号的频谱仅一阶 0.5 Hz 左右 1.184 Hz 和 2.502 Hz 处有明显的频率成分,其中 0.5 Hz 频率左 右的信号为激励频率。1.118 4 Hz 和 2.502 Hz 的 频率为固有频率,说明本系统可以有效的抓取到叶 片的固有频率的信号成分。

图 12 光纤加速度信号分析

東方電氣評論 2025.9.25

进一步测试传感器在叶片实际运行的使用效果,通过在广元望江坪风场安装叶片状态在线监测系统进行验证。叶片状态在线监测系统由传感器、解调仪和工控机组成。其中传感器部分主要包括三个双轴光纤加速度传感器和12个温度应变一体光纤传感器,所有光纤传感器公用一个光纤解调仪,工控机采集光纤调理仪数据进行存储处理和显示。其中三个光纤加速度传感器分别安装三个叶片距离叶根越1/3处,12个应变传感器分别安装在三个叶片的叶根处,其安装位置如图13所示。

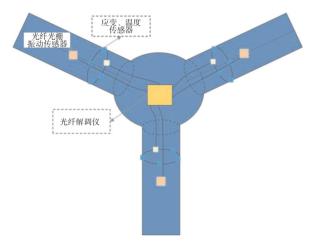


图 13 传感器安装示意图

为验证叶片监测系统算法的有效性,本研究采集了该风场特定风电叶片的加速度信号。该风电叶片由海玻璃钢研究院有限公司生产,型号为 1.5 MW-40.3 m,其设计固有频率分别为:挥舞方向 1 阶固有频率 0.78 Hz、2 阶固有频率 2.16 Hz;摆振方向 1 阶固有频率 1.49 Hz、2 阶固有频率 4.34 Hz。针对故障机组叶片的振动信号进行深入分析,并提取其固有频率,如图 14 所示。结果表明,在 1.51 Hz、4.42 Hz 和 10.34 Hz 处的频率特征较为稳定。其中,前两阶固有频率与设计值基本吻合,验证了所提取结果的可靠性,进一步证明了所提出算法在叶片振动监测中的准确性和有效性。

5 总结

由于高空叶片片对防雷击的特殊要求,本文利 用光纤传感器在防雷上的天然优势,使用光纤传感 技术取代压电等电传输方式、同时根据叶片状态监 测的高灵敏度、低频等需求开发了一款低频高灵敏 度的光纤加速度传感器。对该传感器进行了理论分析和有限元仿真,并对传感器的性能进行了测试,结果表明基于本文设计的光纤加速度传感器具有较平坦的低频响应性能和500 pm/g 的高灵敏度,但是在横向抗干扰实验中,横向抗干扰能力较弱,需要进一步改进结构工艺,加强传感器的横向刚度。同时对于光纤传感器在不同温度下的响应特性也需要进一步进行研究。

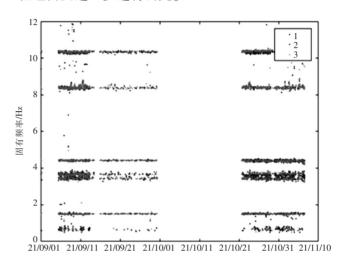


图 14 某风电叶片固有频率监测结果

此外,本文也在叶片疲劳寿命实验中对该传感器实验验证,实验结果表明,该传感器的性能可以满足对叶片固有频率的分析和抓取,下一步将加强在不同风电场工况下的长周期监测试验,验证系统在实际复杂环境中的稳定性与可靠性,并针对不同机型和运行条件进行定制化改进,为大规模工程应用提供技术保障。

参考文献:

- [1] Barlas E, Zhu W J, Shen W Z, et al. Consistent modelling of wind turbine noise propagation from source to receiver [J]. The Journal of the Acoustical Society of America, 2017, 142(5):3297-3310
- [2] Wang W, Xue Y, He C, et al. Review of the typical damage and damage-detection methods of large wind turbine blades [J]. Energies, 2022, 15(15):5672
- [3] Song X, Xing Z, Jia Y, et al. Review on the damage and fault diagnosis of wind turbine blades in the germination stage [J]. Energies, 2022, 15(20):7492
- [4] Du Y, Zhou S, Jing X, et al. Damage detection techniques for wind turbine blades: A review [J]. Mechanical Systems and Signal Processing, 2020, 141:106445

東テ電氣評論 2025.9.25

- [5] Sierra-Pérez J, Torres-Arredondo M A, Güemes A. Damage and nonlinearities detection in wind turbine blades based on strain field pattern recognition. FBGs, OBR and strain gauges comparison [J]. Composite Structures, 2016, 135: 156-166
- [6] Bezziccheri M, Castellini P, Evangelisti P, et al. Measurement of mechanical loads in large wind turbines: Problems on calibration of strain gage bridges and analysis of uncertainty [J]. Wind Energy, 2017,20(12):1997-2010
- [7] Beganovic N, Söffker D. Structural health management utilization for lifetime prognosis and advanced control strategy deployment of wind turbines: An overview and outlook concerning actual methods, tools, and obtained results [J]. Renewable and Sustainable Energy Reviews, 2016, 64:68-83
- [8] Márquez F P G, Tobias A M, Pérez J M P, et al. Condition monitoring of wind turbines: Techniques and methods [J]. Renewable Energy, 2012, 46:169-178
- [9] Wei J, McCarty J. Acoustic emission evaluation of composite wind turbine blades during fatigue testing [J]. Wind Engineering, 1993, 17(6):266-274
- [10] Stetco A, Dinmohammadi F, Zhao X, et al. Machine learning methods for wind turbine condition monitoring: A review [J]. Renewable Energy, 2019, 133:620-635
- [11] 杨昌,周宏朴,张敏,等. 新型簧片式光纤加速度传感器研究

- [J]. 光电子. 激光,2013,24(2):209-214
- [12] 刘钦朋,乔学光,赵建林,等.基于弹性管的光纤布拉格光栅加 速度传感研究[J]. 光电子激光,2012,23(7):1227-1232
- [13] Casas-Ramos M A, Sandoval-Romero G E. Modified optical fiber Bragg grating accelerometer [C]//2015 Argentine School of Micro-Nanoelectronics, Technology and Applications (${\rm EAMTA}$) , 2015 : 28-32
- [14] Hou Y, Zhang W, Li F. Cantilever-based two-axis fiber Bragg grating accelerometer [C]//Proceedings of SPIE-The International Society for Optical Engineering, 2013:89140R
- [15] Li T, Tan Y, Han X, et al. Diaphragm Based Fiber Bragg Grating Acceleration Sensor with Temperature Compensation [J]. Sensors, 2017,17(1):218
- [16] Zhang G, Si Y, Wang D, et al. Automated Detection of Myocardial Infarction Using a Gramian Angular Field and Principal Component Analysis Network [J]. IEEE Access, 2019, 7:171570-171583
- [17] 张全鑫,叶曦,杨志红,等. 基于改进通道多头注意力机制的 U-Net3+医学图像分割算法研究[J]. 江汉大学学报(自然科学 版),2024,52(3):51-61
- [18] 惠鹏,郭永刚,鞠伟. 风电场风力发电机组叶片失效断裂分析 [J]. 科技创新导报,2017,14(33):80-81
- [19] 顾永强,冯锦飞,贾宝华,等. 损伤风机叶片模态频率变化规律 的试验研究[J]. 噪声与振动控制,2020,40(3):84-87

分布式光伏并网运行风险感知 与昉控技术体系分析

雷宇 李路遥* 陈本坤 刘泽鑫 袁明利

东方电气集团电力工程设计咨询有限公司,成都 611731

摘要:新型电力系统加速建设的背景下,分布式光伏规模化并网显著增加了主配电网在安全运行、电力平衡与新能源消纳的风险与挑战。本文提出一套分布式光伏并网运行风险感知与防控技术体系框架,该框架通过多源异构数据集成与融合技术奠定状态感知基础,进而基于故障风险特征相关性分析与故障模式后果分析技术,衔接风险感知、特征提取与量化评估逻辑,最后提出风险预警与协同决策的关键技术方向。本文旨在通过对现有研究的梳理和分析,凝练技术体系的逻辑与架构,为高比例分布式光伏并网运行的风险管理与主动防控技术研究提供系统性的理论框架和实践指引。

关键词:新型电力系统;分布式光伏;并网运行风险感知与防控

中图分类号:TM615

文献标识码:A

文章编号:1001-9006(2025)05-0061-07

Analysis of Risk Perception and Mitigation Technology Framework for Distributed PV Grid-connected Operation Under New Electricity System Development

LEI Yu, LI Luyao*, CHEN Benkun, LIU Zexin, YUAN Mingli

(Dongfang Electric Power Engineering Consulting Co., Ltd., 611731, Chengdu, Sichuan, China)

Abstract: Under the accelerated development of new electricity systems, the large-scale integration of distributed photovoltaic (PV) generation has significantly increased the risks and challenges for transmission and distribution networks in terms of secure operation, power balance, and renewable energy accommodation. This paper proposes a comprehensive technical framework for risk perception and prevention in distributed PV grid integration. The framework establishes a foundation for state awareness through multi-source heterogeneous data integration and fusion technologies. Subsequently, leveraging fault risk feature correlation analysis and failure mode and effect analysis bridges the logic of risk perception, feature extraction, and quantitative assessment. Finally, key technical directions for risk early warning and coordinated decision-making are proposed. By reviewing and analyzing existing research, this paper aims to refine the logical structure of the technical framework, providing a systematic theoretical foundation and practical guidance for risk management and proactive prevention in high-penetration distributed PV grid integration.

Key words: new electricity system; distributed PV system; risk perception and mitigation for grid-connected operation

近年来,光伏发电技术已经逐步趋于成熟和完善,集中式和分布式光伏的并网容量逐渐增大、发电量占比不断提升。随着整县屋顶光伏项目大规

模推动,分布式光伏在"十四五"期间大规模发展。 如何实时获取分布式光伏运行状态信息,分析分布 式光伏运行风险点,采取调度控制策略消除电网运

收稿日期:2025-07-03

作者简介:雷宇(1986—),男,研究生,高级工程师,主要从事煤电综合升级、新能源、零碳园区等综合能源领域的技术研究和工程应用工作。 李路遥(1992—),男,研究生,工程师。主要从事综合能源规划设计系统研发工作。通信邮箱:liluyao_27@163.com。

行风险,提高主配电网运行的稳定性和可靠性,是电网建设运营主体和调度决策机构急需解决的问题^[1]。但由于分布式光伏并网电压等级低,可观、可测、可调、可控"四可"能力建设未全面推广,调度机构并未完全掌握其运行信息,对区域电网,尤其是中低压配电网运行带来较大的安全隐患,主要体现在安全、平衡和消纳三个方面。

一是增加电网安全运行风险。分布式光伏大规模发展,将配电网由"无源网"发展为"有源网"。部分台区光伏发电量超过所在台区用户消纳能力,电能大量上送,造成台区及低压线路过载,甚至导致上级110千伏变电站或线路反向过载,危及电网安全稳定运行。分布式光伏输出有功功率较大时易抬高配电线路、台区的末端电压,增大电网调压难度^[2]。

二是对电网平衡带来挑战。光伏出力与气象环境相关,具有随机、波动、间歇特性,为源侧调节引入高度不确定性。光伏的随机波动特性传导至需求侧,使分布式光伏和负荷整体有功变化不再只由用户用电习惯决定,日最低负荷可能从夜间转移到午间,加大电网保消纳与保供应矛盾,而目前分布式光伏尚未完全实现"可观可测","可调可控"比例较低,增加了电网实时平衡调节难度[34]。

三是分布式光伏末端消纳承压。分布式光伏 多接在相对薄弱的末端电网,分布式光伏可消纳容 量受制于线路载流能力、配变容量、网架、调压和主 网调峰能力等制约因素,部分农村长线路末端可接 纳容量严重受限。午间分布式光伏大出力,叠加用 电负荷低谷,导致分布式光伏就地消纳能力 受限^[5]。

当前电网对分布式光伏运行的风险感知能力仍存在不足,相关运行风险预警体系尚未形成,无法支撑电网运行风险的精确评估。由于配电终端覆盖比例低,电网信息采集能力不足,造成数据接入不全、数据质量参差不齐等问题,且分布式光伏数据分布在不同的业务系统中,存在大量孤岛,各孤岛数据存在定义标准不统一、颗粒度差异大以及数据异构等问题,缺乏有效的数据价值挖掘方法^[6]。打通各子系统数据孤岛,形成基于数据融合与数据价值挖掘技术的分布式光伏实时运行风险

在线感知技术,并在此基础上构建电网的风险预警 机制,为电网运行提供辅助决策支持,是当前的热 点研究方向之一。

本文针对当前新型电力系统建设背景下的分布式光伏并网运行在安全、平衡和消纳等方面存在的问题,分析提出风险感知与防控的解决思路和关键技术点。

1 国内外研究进展

1.1 分布式光伏数据集成与融合技术

分布式光伏数据具有异构性、多源性及海量性等特点,常规数据融合技术无法实现分布式光伏数据价值的有效挖掘。目前,在分布式光伏异常数据识别和缺失数据重构方面已经有少量探索,缺失数据重构主要通过聚类、神经网络等方法实现,具有较高的重构精度,但是在开发数据融合综合应用系统、构建数据融合理论框架、提出性能更高的数据融合算法等方面的研究还相对匮乏[7]。

异常数据识别常见方法有包括四分位距法、Z-Score 法等在内的统计学方法,包括 K 近邻法、局部离群因子法、聚类法等在内的基于距离的方法,以及主成分分析、线性回归模型、孤立森林等基于模型的方法,目前上述方法已广泛应用于负荷异常数据识别、新能源功率异常数据识别、传输线路功率异常识别等电力系统领域,但在分布式光伏领域仍处于起步阶段,现有研究聚焦以卡尔曼滤波、Copula 理论为主要支撑的异常识别、以神经网络、生成对抗网络为主要手段的缺失重构^[8-14],但对分布式光伏多模态融合框架的理论探索不足。

1.2 分布式光伏接入风险评估体系

我国在国外的先进技术和理念的基础上,于2012年颁布了适用于我国国情的《城市供电安全标准 DL/T 256—2012》,实现了我国国内电网的风险控制及量化的操作要求,但现行标准依赖 N-1 准则或负荷影响指标,尚未适配高渗透率光伏的随机特性。

文献[15]~[20]针对供电安全标准的理论机制展开剖析,借助实际案例阐述了标准在配电网供电能力评估、薄弱环节排查以及供电方案优化等场景中的应用路径,并通过量化分析与场景模拟,明

東方電氣評論 2025.9.25

确了标准在电力系统运行全流程中的实施要点。 但是在分布式光伏大规模接入的背景下,尚未形成 行之有效的风险评估体系,相应内容有待进一步 探究。

1.3 新能源并网运行风险防控辅助决策技术

针对主配电网方式计划调整辅助决策方法,国内外相关研究机构开展了大量关于防控模型、控制策略、优化算法等的研究。文献[21]~[24]致力于主配电网风险控制建模与应用,包括考虑无功优化、机组调度、切负荷策略的静态安全风险防控模型,考虑检修调整离线优化和在线电压过载风险抑制多时间尺度防控方案。文献[25]~[29]聚焦配电网风险防控,提出基于遗传算法、粒子群优化等改进智能算法的协同控制策略,通过优化线路维修更换、配置储能调控出力、设计预防控制模型降低过载与电压风险、建立风险最优潮流框架及权衡风险-运行成本的多目标决策等手段,实现配电网运行风险的综合优化控制。

当前大多数风险防控模型所纳入的可控资源 类型较为局限,主要聚焦于集中式新能源发电的出力调控。在实际配电网运行场景中,存在大量多元 化的可控资源,涵盖分布式发电单元、可控负荷集 群、储能设施以及电动汽车等灵活性资源。如何构 建有效的协同调度机制,实现对这些资源的高效整 合与优化配置,在保障配电网经济运行的同时,提 升系统抵御风险的能力,已成为学术界和工程界共 同关注的前沿研究方向。

1.4 紧急控制场景下的新能源与负荷控制策略

随着风电、光伏等越来越多的新能源被并入到电网中,电网结构日益复杂,使得电网发生紧急情况的概率也逐渐增加。文献[30]~[31]依托实际算例系统开展仿真分析,通过对比新能源机组与火电机组在切机操作后对系统功角稳定性的差异化影响,有力佐证了新能源机组切机策略实施的重要意义。然而现有研究仍存在一定局限性,尚未就新能源机组切机的具体技术方案、实施条件及参数优化等关键问题展开深入探讨。文献[32]~[33]研究表明,在含高比例新能源的电力系统故障场景中,若紧急切机策略仅以火电机组作为切除对象,会致使系统内新能源渗透率显著攀升,进而引发系

统阻尼比大幅降低。这一现象不仅会延缓系统故障后的恢复进程,还会对系统暂态稳定的维持产生不利影响。该研究从系统动态特性角度揭示了单一切除火电机组的局限性,为优化含新能源的紧急切机策略提供了参考。文献[34]结合均值聚类、人工神经网络和层次分析法,提出了一种新的紧急切负荷控制模型,减少了系统恢复动态稳定所需的时间。

对于含新能源系统的有功紧急控制,大多数研究聚焦集中式新能源场景,将新能源和负荷解耦,未考虑配电网及其紧急情况下含有分布式光伏的配电网的紧急切负荷、供电恢复问题。分布式电源的间歇性和随机性,会导致配电网紧急切负荷的精度要求大大提升,供电恢复过程更加复杂。因此,分布式光伏接入后紧急情况下精确切负荷和供电恢复方法值得进一步探究。

2 风险感知与防控体系基础技术分析

2.1 数据集成对象

数据是实现分布式光伏并网运行风险感知与防控的基础。为了应对分布式光伏数据散在多源的特点,首先需要实现与分布式光伏运行管理相关的配电网数据"六个集成",如图1所示。

- (1)与营销业务应用数据集成。集成数据范畴应涵盖标准代码体系、客户档案信息、计量点参数配置、表计运行数据、台区及配变基础资料,以及配电网设备拓扑关联关系等核心内容。考虑传输数据体量、数据更新频率等关键参数,依托营销基础数据平台的数据同步机制,将营销业务应用系统中的原始数据进行镜像复制,并存储至数据中心;在此基础上,配电网运行分析系统通过标准化接口协议,从数据中心的营销基础数据平台中调取所需数据资源,从而实现两个系统间的数据互通与共享。
- (2)与用电信息采集系统数据集成。用电信息 采集系统通过符合行业规范的海量数据标准接口, 将电量计量数据、电能表实时底码等关键信息同步 写人数据平台。同时在配电网运行分析系统中部 署专用计算服务模块,该模块遵循统一的数据访问 协议,利用海量数据平台的标准接口,定向提取电 能表底示数数据,从而构建起数据采集、存储与调

用的完整链路。

- (3)与设备资产运维精益管理系统(PMS2.0)数据集成。PMS2.0系统将输配电环节的结构化数据,通过专用数据通道推送至数据中心存储。配电网运行分析系统则基于抽取转化加载(ETL,Extract-Transform-Load)技术框架,对数据中心存储的原始数据进行自动化处理。通过数据抽取获取全量设备数据,继而利用数据转换模块,依据分析系统的数据标准对设备台账信息和网络拓扑数据进行格式规整与质量校验,最后通过数据加载功能将处理后的数据导入分析系统数据库。
- (4)与电网 GIS 平台数据集成。配电网运行分析系统与 GIS 平台的数据集成主要包括电网设备管理、基础地图和电网潮流图展示等信息。
- (5)与配电自动化系统数据集成。运行分析系统集成配电网设备及拓扑信息,由调控中心生成公共信息模型(CIM, Common Information Model)格式文件,数据中心负责数据解析。
- (6)与气象信息系统数据集成。气象信息系统 通过数据平台接口将辐照、风速、风向、温度、湿度、 气压等数智天气数据写入。

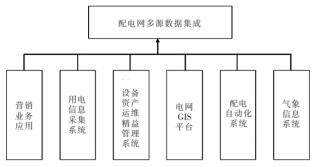


图 1 配电网多源数据集成示意图

2.2 数据融合技术

数据融合技术是指将多个来源的数据进行集成、关联和组合,是在数据集成的基础上,让集成多个系统的数据集产生更全面、准确和有用信息的过程。实现方法包括估计方法、推理方法、信息论方法、人工智能方法等,多源异构数据融合算法结构关系如图 2 所示。

(1)估计方法。在线性估计技术方面,以最小 二乘法为代表的参数估计方法,通过最小化误差的 平方和寻找数据的最佳函数匹配;加权平均数法依 据数据的重要程度赋予不同权重,实现对目标参数 的估计;卡尔曼滤波法则利用系统状态方程与观测方程,在动态系统中迭代更新估计值。非线性估计技术领域,高斯滤波技术基于高斯分布特性对信号进行平滑处理,而扩展卡尔曼滤波技术则通过线性化近似,将卡尔曼滤波原理拓展应用于非线性系统,为复杂系统状态估计提供有效解决方案。

- (2)推理方法和信息论方法。统计方法主要包括贝叶斯推理、支持向量机理论、经典推理、随机集理论及证据推理。信息论方法在多源数据融合中应用数理统计知识研究信息的处理和传递,其典型算法有熵方法、模糊理论、最小描述长度方法等。
- (3)人工智能方法。神经网络凭借其独特的架构与特性,成为处理复杂非线性数据融合问题的有效工具。神经网络通过构建多层神经元结构,能够模拟高度复杂的非线性映射关系,实现从输入数据到输出结果的精准转换。其具备高速并行运算能力,可大幅提升数据处理效率,强大的联想记忆功能能够基于已有知识对未知数据进行推理预测;其固有的容错机制与自组织特性,使其能够有效应对数据缺失或噪声干扰的情况,尤其适用于多源异构数据的融合处理,满足复杂系统对数据综合分析与特征提取的需求。

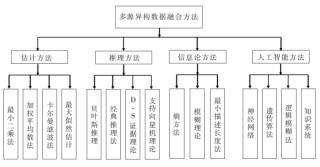


图 2 数据融合算法结构图

2.3 故障风险特征相关性分析技术

考虑配电网发生故障的影响因素众多,存在很多冗余、无关的故障特征,可采用数据管理模块集成的多源数据,包括温度、湿度、风速等天气数据,设备位置数据,配变容量、实时负荷数据、月最大负荷数据和停电时间、停电次数、缺供电量数据等,确定故障因素样本集,通过典型相关分析、特征工程等方法,进行与分布式光伏相关的故障特征筛选。在此基础上,可以进一步通过故障树分析、事件树分析和故障模式及后果分析等方法实现故障风险预测。

3 风险感知与防控体系关键技术分析

3.1 面向分布式光伏的广域多源异构数据在线融合技术

分布式光伏多维数据的集成需要将不同系统的数据进行整合,但是由于不同部门间信息壁垒和数据孤岛,不同专业对于分布式光伏的专业管理系统无法实现有效融合,导致数据存在质量参差不齐、颗粒度不同、数据异构、数据异步等问题,无法直接通过常规数据集成手段完成数据的在线融合。因此,稳定高效、弹性伸缩的数据同步方式、多维时间序列的异常检测模型和基于多模态学习的在线融合模型是实现多源异构数据集成的关键所在。

针对分布式光伏运行数据的异构性和多源性, 首先应构建基于异构数据智能处理技术的在线集 成模型和检测模型;针对 10 kV 及以上分布式光伏 数据,结合主配电网潮流算法和新能源预测技术, 需构建基于多维时间序列理论的高比例分布式光 伏电网运行状态估测模型;针对 10 kV 以下分布式 光伏运行数据,需建立用户侧分布式光伏与负荷信 息解耦模型。在此基础上,建立基于多模态学习的 在线融合模型,提出分布式光伏运行信息一体化在 线融合技术体系,技术路线如图 3 所示。

图 3 广域多源异构数据在线融合

3.2 多应用场景风险在线感知及量化评估指标 体系

高比例分布式电源背景下的并网运行风险在 线感知及量化评估要求尽可能多的获取多类型数据,包括分布式光伏、主配电网、气象环境信息等, 并在此基础上建立表征反向潮流过载、低压低频减 载、非工频稳定性问题等电网运行风险分析模型。 在模型种类多、数据结构复杂的情况下,构建适用 于多应用场景的并网运行风险在线感知及量化评估指标体系是一大难点。

并网运行风险感知的前提是进行风险特征提

取。因此,应基于分布式光伏出力重构与概率性场 景生成技术,研究前向推演生成符合时空分布特性 的分布式光伏概率性出力场景方法:基于推演场景 下的仿真分析,分别研究电网安全、电网平衡和新 能源消纳三大类电网运行风险;基于特征生成技 术,研究高维运行状态特征的降维处理和特征权重 确定方法,构建面向不同运行风险指标的特征集, 建立基于多维融合信息的风险特征数值模型。指 标体系层面,针对三大类电网运行风险,构建基于 风险特征的风险指标映射模型,提出可实时计算的 风险指标评估计算方法及运行风险指标集:研究日 前方式安排、日内调度运行、事故紧急控制等不同 应用场景下的风险量化指标及其控制要求;针对影 响电网安全可靠运行的重要新能源并网风险评估 指标,研究相关风险的关键影响因素,并对风险指 标进行排序,实现路径如图 4 所示。

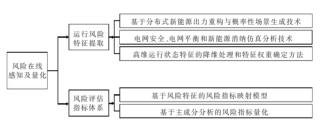


图 4 风险在线感知及量化评估

3.3 计及多种不确定因素的主配电网运行风险防 控策略

风险防控需以主配电网中的分布式光伏、需求响应负荷、常规负荷、负荷转供量等作为控制变量,以节点电压、线路潮流与配电网失负荷情况等风险指标作为状态变量进行最优化求解。然而,分布式光伏、需求响应负荷、常规负荷波动量等变量具有种类丰富、数量大、随机性强等特点,且现有的主配电网风险防控方法仍存在识别风险速度慢、风险等级划分不明确、无法合理协同多种可控资源等不足,导致风险防控难度大大增加。因此,研究计及多种不确定因素的主配电网运行风险防控策略是实现运行风险防控的重要一环。

防控解决策略应综合考虑"防"和"控"两个方面,应涵盖图 5 所示研究内容。"防"主要是指风险的预警体系,应对主配电网三大运行风险指标下的所有子指标值进行标准化并求取系数矩阵,研究包含多个配电网的综合运行风险指标的计算方法;进

而研究主网层和配网层的不同类型风险和综合运行风险的预警标准集,确定主配电网多类型实际运行风险指标的预警等级,构建主配电网的风险预警体系,区分主配电网运行辅助决策和紧急控制场景以实施不同类型风险对应的措施。"控"主要是指风险发生后的应对策略,应以最小切负荷量为目标函数,以安全、平衡及消纳运行风险及电网潮流等作为约束条件,建立计及主网运行风险的新能源与负荷控制优化模型,计算典型紧急运行场景下各个配电网的最优新能源与负荷控制总量;研究并建立考虑分布式电源的单个配电网精细化负荷控制模型,计算合适的负荷控制量及负荷控制区域,实现多种运行方式下的紧急协同精准控制。

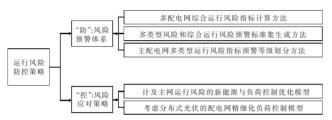


图 5 运行风险防控策略

3.4 大规模分布式光伏并网风险智能分析与防控 决策系统

风险智能分析与防控决策系统的建设,应首先 开展分布式光伏运行风险智能分析与防控决策系 统功能需求和数据需求调研;设计系统的各个模块 的功能与输入输出数据接口;提出基于调控云的系 统数据采集与数据传输方案;基于数据需求和应用 需求,研究分布式光伏多维数据融合建模方案;提 出基于调控云的分布式光伏运行风险智能分析与 防控决策系统架构设计方案。然后研发在线数据 采集与数据集成模块,实现分布式光伏数据采集、 数据质量控制与多维数据融合;开发分布式光伏并 网运行风险在线感知模块;开发主配电网调度运行 风险智能预警模块;构建面向多场景的主配电网方 式计划调整与源荷协同控制策略数据库,开发分布 式光伏运行风险防控辅助决策模块,如图 6 所示。

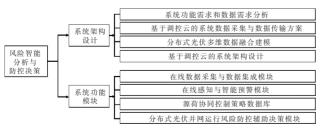


图 6 风险智能分析与防控决策

4 结语

本文研究了新型电力系统建设背景下高比例 分布式光伏并网运行风险感知与防控基础技术和 关键技术体系,阐述了解决分布式光伏大规模接入 地区电网带来的运行态势精确感知及风险量化评 估问题的必要技术手段,旨在从系统角度实现分布 式光伏可观、可测、可控、可调,并提出实现配电网 运行状态趋势预判、并网运行风险预警办法和应对 策略的技术路线。在此基础上,本文提出的基于调 控云构建风险防控决策系统平台架构和功能模块, 可以为地区主配电网调度运行提供辅助决策支持, 为调度部门制定日前/日内发电计划和检修计划提 供定量依据,提高含分布式光伏主配电网运行的可 靠性。

参考文献:

- [1] 张文超,刘立群,杨智君,等.光伏发电并网运行风险评估[J]. 太原科技大学学报,2020,41(5);344-351
- [2] 蒋春容,朱博汶,周旭峰,等.基于分布式光伏集群控制的主动 配电网电压优化策略[J].电力工程技术,2025,44(3):188-200
- [3] 梁志峰,康重庆,隋凌峰,等. 含高比例分布式光伏的主配网运行风险评估与防控策略研究[J]. 清华大学学报(自然科学版),2024,64(11):1964-1978
- [4] 张强,李娜,蔺晨晖,等.基于"分级-协同"思想的分布式光伏 柔性参与电网调峰技术研究及应用[J].山东电力技术,2025, 52(1):46-53
- [5] 王守相, 尹孜阳, 赵倩宇. 考虑多供电层级耦合的中低压配电 网分布式光伏承载力一体化精细评估方法[J]. 电工技术学报, 2025, 40(6):1930-1944
- [6] 张稳,盛万兴,杜松怀,等.基于海量数据的配电网运行分析系统架构与技术实现[J].电力系统自动化,2020,44(3):147-153
- [7] 贺雅琪. 多源异构数据融合关键技术研究及其应用[D]. 电子 科技大学, 2018
- [8] 左松林,陈伟,付真斌,等. 基于 EKF 算法的分布式光伏发电异常数据排查技术[J]. 电力工程技术,2020,39(5):120-125
- [9] 杨茂,黄鑫.基于光照过程特征分析的光伏功率异常数据识别 算法[J].电力系统自动化,2019,43(6):64-69
- [10] Koubli E, Palmer D, Betts T, et al. Inference of missing PV monitoring data using neural networks [C]//2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC) ,2016;3436-3440
- [11] 龚尚红,潘庭龙,吴定会,等. 基于 MCMC 的微网光伏数据缺失填补方法的研究[J]. 可再生能源,2018,36(3):346-350
- [12] 吕斌斌,方勤斌,王国帮.分布式家庭屋顶光伏异常数据识别与修复方法[J].电气传动自动化,2018,40(2):1-5+20

東方電氣評論 2025.9.25

- [13] 赖昌伟,黎静华,陈博,等. 光伏发电出力预测技术研究综述 [J]. 电工技术学报,2019,34(6):1201-1217
- [14] 殷豪, 丁伟锋, 陈顺, 等. 基于生成对抗网络和纵横交叉粒子群 算法的光伏数据缺失重构方法 [J]. 电网技术, 2022, 46(4): 1372-1381
- [15] 张代红,沈海华,姜念,等. 基于供电安全标准的配电网诊断分析方法研究[J]. 湖北电力,2015,39(S1):11-15
- [16] 赵雄光,郑旭,赵红生,等. 供电安全标准分析法在配电网规划中的应用[J]. 湖北电力,2016,40(1):63-66
- [17] 袁文根,欧阳光,张伟. 基于供电安全标准的配电网诊断方法 [J]. 农村电气化,2016(4):16-18
- [18] 吴罡. 应用英国 ERP2/6 供电标准评估山江变供电安全水平及 优化方案建议[C]//浙江省科学技术协会,上海市科学技术协会,江苏省科学技术协会. 海洋经济与电力发展;第十届长三 角电机、电力科技分论坛论文集. 南京供电公司,2013;146-150
- [19] 曹彦昆. 基于 ER P2/6 和599 号令的电网风险定量分析和优化 措施研究[D]. 华北电力大学,2015
- [20] 周维. 基于 ER P2/6 的无锡市电网供电标准研究[J]. 华东电力,2014,42(10);2055-2059
- [21] 刘向东. 复杂配电系统风险评估与控制研究[D]. 广东工业大学. 2016
- [22] 刘怡芳. 电力系统静态安全性的风险评估方法研究[D]. 华中科技大学,2011
- [23] 王一枫. 电网运行风险定级与管控研究[D]. 浙江大学,2015
- [24] 邓彬. 电网运行风险评估及管控研究[D]. 浙江大学,2014
- [25] 符杨,廖剑波,李振坤,等. 考虑越限风险的主动配电网目前优化调度及运行[J]. 中国电机工程学报,2017,37(21):

6328-6338

- [26] 文云峰,崔建磊,张金江,等.面向调度运行的电网安全风险管理控制系统(一)概念及架构与功能设计[J].电力系统自动化,2013,37(9);66-73
- [27] 邬智江. 面向分布式电源和电动汽车的配电网运行风险评估 [D]. 广东工业大学,2016
- [28] 丁理杰,陈为化,包哲静.基于风险评估的电力系统预防控制 [J]. 华东电力,2009,37(11):1826-1831
- [29] Li Y, McCalley J D. Risk-based optimal power flow and system operation state [C]//2009 IEEE Power & Energy Society General Meeting, 2009:1-6
- [30] Xiao F, McCalley J D. Power System Risk Assessment and Control in a Multiobjective Framework [J]. IEEE Transactions on Power Systems, 2009, 24(1):78-85
- [31] 丁剑,邱跃丰,孙华东,等. 大规模风电接人下风电机组切机措施研究(英文)[J]. 中国电机工程学报,2011,31(19):25-36
- [32] Tsourakis G, Nomikos B M, Vournas C D. Contribution of Doubly Fed Wind Generators to Oscillation Damping [J]. IEEE Transactions on Energy Conversion, 2009, 24(3):783-791
- [33] 宋晓芳,周玲,薛峰. 多源并存系统外送工况下的暂态稳定控制[C]//中国电机工程学会. 2013 年中国电机工程学会年会论文集. 国网电力科学研究院/南京南瑞集团公司, 2013: 2300-2305
- [34] Huang Q, Huang R, Hao W, et al. Adaptive Power System Emergency Control Using Deep Reinforcement Learning [J]. IEEE Transactions on Smart Grid, 2020, 11(2):1171-1182

风速对塔式光热电站聚光集热系统性 能影响分析

奚 正稳^{1,2} 丁路^{1,2} 刘晓^{1,2}

1. 能源清洁低碳热转化利用技术与装备四川省重点实验室,成都 611731; 2. 东方电气集团东方锅炉股份有限公司,四川 自贡 643001

摘要:光热电站的选址需兼顾良好的太阳直射辐射资源与较低的土地成本,但我国适宜建设光热电站的地区多位于高风速区域,大风不仅会降低塔式聚光集热系统中定日镜与吸热器的性能,还会带来设备安全隐患。为此通过研究风速与太阳直射辐射的重合特性、风速对定日镜和吸热器性能衰减的影响,提出适用于高风速环境下定日镜与吸热器的设备设计原则,并给出了高风速工况下设备运行的建议。

关键词: 塔式光热: 定日镜: 吸热器: 风速

中图分类号:TM61 文献

文献标识码:A

文章编号:1001-9006(2025)05-0068-08

Analysis of the Effect of Wind Speed on the Performance of the Concentrating and Collecting System in Tower Solar Thermal Power Plants

XI Zhengwen^{1, 2}, DING Lu^{1, 2}, LIU Xiao^{1, 2}

 Energy Cleaning and Low-Carbon Thermal Conversion Utilization Technology and Equipment Key Laboratory of Sichuan Province, 611731, Chengdu, China;

2. Dongfang Boiler Co., Ltd., 643001, Zigong, Sichuan, China)

Abstract: The site selection for solar thermal power plants (STPP) requires high direct normal irradiance (DNI) and low land costs. However, regions in China suitable for STPP construction are often characterized by high wind speeds. Strong winds not only reduce the performance of heliostats and receivers in solar power tower systems but also pose safety risks to equipment. This study investigates the coincidence between wind speed and DNI, as well as the impact of wind speed on the performance degradation of heliostats and receivers. On these grounds, design principles for heliostat and receiver equipment are proposed, along with operational recommendations for high wind speed conditions.

Key words: solar power tower; heliostat; receiver; wind speed

塔式光热发电是利用众多定日镜将太阳光反射到吸热器上,由吸热器将定日镜反射的辐射能转换为工质的热能,由于定日镜和吸热器都处于开放环境中工作,其运行除受到太阳辐射影响外,还受到大风、云等影响。我国适合建设光热电站的区域通常伴随大风现象,大风会导致定日镜和吸热器的效率下降还可能影响设备的安全运行,在设计和运

行中都必须充分考虑风对聚光集热系统的影响。

1 风的简介

风是空气分子的运动,它是由太阳辐射热引起的,当太阳光照射在地表时会使得地表温度升高, 地表的空气受热膨胀上升。热空气上升时低温的 冷空气会横向流入,流入的冷空气在上升过程中将

收稿日期:2025-07-23

作者简介:奚正稳(1968—),男,1993年毕业于湖南大学工程力学专业,本科,正高级工程师。现任职于东方电气集团东方锅炉股份有限公司, 从事太阳能光热发电聚光集热系统研发工作。 热空气逐渐冷却而变重降落,由于地表温度较高又会加热空气使之上升,这种空气的流动就产生了风。

1.1 风速和风力

风速是指空气相对于地球某一固定地点的运动速度,常用单位是 m/s。风速是风力等级划分的依据。风速通常用平均风速、最大风速、极大风速来表征。平均风速是指某一时间段内,各次观测的风速的算术平均值,有3秒钟、1分钟、2分钟、10分钟平均风速。最大风速是指某一段时间内的10分钟平均风速的最大值。挑取一天最大风速就是这一天内任意10分钟平均值的最大者为日最大风速,最大风速是个平均值。极大风速是指给定某一段时间内的瞬时风速的最大值,瞬时风速通常为3秒钟平均风速。一天的极大风速是在这一天瞬时风速(通常为1秒钟平均风速)的最大值,极大风速是个瞬时值。在指定的同一时段内,绝大部分情况下极大风速大于最大风速。

风力等级简称风级,是风强度(风力)的一种表示方法,国际通用的风力等级是由英国人蒲福(Beaufort)于1805年拟定的,故又称"蒲福风力等级",它最初是根据风对炊烟、沙尘、地物、渔船、渔浪等的影响大小分为0-12级共13级,后来,又在原分级的基础上,增加了相应的风速界限;自1946年以来,风力等级又作了扩充,增加到18个等级(0-17)。风速、风力对应关系以及某项目典型气象年风速分布范围、分布时间如表1所示。

表 1 风速风力

序号	名称	风速范围	某项目风速	备注
	石仦	(m/s)	出现时长(h)	甘 仁
1	无风至微风	0~5.4	4155	工作风速
2	和风	5.5~7.9	1790	工作风速
3	清风	8.0~10.7	1274	工作风速
4	强风	10.8~13.8	842	工作风速
5	疾风	13.9~17.1	528	工作风速
6	大风	17.2~20.7	151	. " =
7	烈风	20.8~24.4	18	工作至
8	狂风	24.5~28.4	2	生存风速
9	暴风	28.5~32.6		生存风速

如果风在运动过程中受到物体的阻挡,使物体 四周空气流动受阻,动压下降静压升高,侧面和背 面产生局部涡流,静压下降动压升高,和远处未受到干扰的气流相比,这种静压的升高和降低统称为风压。物体或设备也会导致不同位置的涡流呈现差异,对物体或设备各处影响程度不同,也有必要研究物体或设备表面的风压分布。

1.2 风的分布

风对塔式光热电站定日镜的影响主要表现在 两方面:一是随风速增加定日镜的跟踪和面型性能 会出现降级衰减;二是当风速超过一定数值后将对 定日镜的运行安全带来威胁。

在设计定日镜时,如果提高定日镜性能保证和生存风速,将需要通过提高定日镜的结构刚度和强度来实现,这会相应提高定日镜的制造成本。如果选择较低的定日镜允许运行风速和生存风速,大风环境项目的定日镜利用率和性能相应降低,同时还可能因定日镜抗风不足而出现设备安全事故。如何确定出定日镜的合理设计风速,需要基于项目风速条件进行分析论证。

如前述,由于定日镜表面各处风压不同导致风 在设备表面的载荷分布出现差异,定日镜各处风压 大小与定日镜的边缘形状、迎风姿态、风速、空气密 度等因素有关。由于确定环境下空气密度变化相 对较小,风速变化范围较大,在研究风对实际项目 的定日镜性能影响分析时,主要研究风速大小及其 出现的频率。因此,在确定定日镜的设计风速条件 时,首先需对风速及其出现的频率进行统计分析, 根据风速分布范围和出现频率以及风速与太阳直 射辐射的重合度进行研究,确定相应的定日镜最 大允许运行风速和生存风速,最终形成具有技术 经济性的定日镜风速设计值。国外已投运项目风 速较小,定日镜允许运行风速达到项目地99%风 速累积频率时风速在 11~15 m/s; 而国内项目地 风速通常较高,如果仍然按照99%风速累积频率 要求时,其对应的风速将达到18~24 m/s。图1为 某项目在年度周期内风速大小及其出现频率的统 计图。

2 太阳辐射

2.1 太阳直射辐射范围和频率

能被定日镜有效利用的太阳辐射值仅为太阳

 200 W/m^2

直射辐射(DNI)部分,并且由于吸热器运行时还存在散热损失,加之镜场也存在余弦、阴影、遮挡、反射、衰减的各项损失,要满足吸热器的有效运行,需对 DNI 大小有一定的要求,该参数通常需要大于

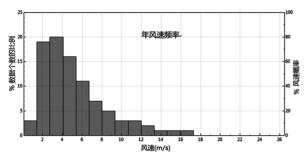


图 1 某项目风速分布区间及概率

某项目年 DNI 为 2 015 kWh/m², DNI 介于 0~1 079 W/m²之间,图 2 为某项目地典型气象年数据中的 DNI 分布范围及其出现的频率,在非零太阳直射辐射数据系列中 DNI 小于 200 W/m²的数据占比为 30 %,其余 DNI 为理论可利用率,但由于风速还会影响定日镜的跟踪吸热器的有效运行,因此还需分析风速对 DNI 利用率的影响。

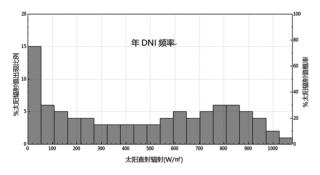


图 2 DNI 分段出现频率

2.2 风速对太阳辐射利用率影响

当风速超过定日镜的设计运行风速时定日镜将进入避风位停止运行,此时 DNI 将不能被有效利用,因此,在研究风对定日镜运行影响时,除考虑风速增加对定日镜性能影响外,还有必要分析风速增加到超过定日镜设计运行风速时不能被有效利用的 DNI。图 3 为某项目风速和 DNI 的对应关系图,不同的风速覆盖的 DNI 范围不同,比如当定日镜按25 m/s 运行风速设计,几乎不存在 DNI 不可用的现象;当定日镜设计风速逐渐降低时,不可用的 DNI 将逐渐增加,在确定定日镜的运行风速时,还需要

研究风速对 DNI 利用率的影响。

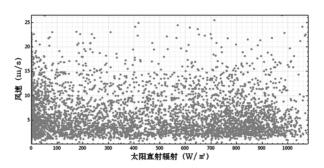


图 3 风速对太阳辐射利用率影响

3 风对聚光集热系统设备性能影

3.1 利用风洞环境测试风对定日镜性能影响

如前述,对边缘轮廓已经确定的定日镜(图 4) 而言,研究风对定日镜性能影响时需从风速大小和定日镜迎风姿态两方面分析。为获得不同风速对定日镜性能的影响,常用方法是通过风洞试验测试不同风速、不同风向角,定日镜不同工作姿态时的镜面位移变化,从而获得其面型误差。以某五边形定日镜为例,开展 0°、10°、20°、30°、40°、50°、60°、70°、80°和 90°俯仰角工况对应于 0~180°等效风偏角步长为 15°的风洞试验。镜面成正五边形,近似圆形,相对于传统定日镜,在自重和风载作用下的变形更小和均匀。

图 4 定日镜

Fig. 4 A heliostat

为准确测得定日镜结构的风致荷载特性,针对某定日镜开展了风影响性能测试。首先设计、制作空气动力外形得到严格模拟的缩尺试验模型(试验模型的几何缩尺比值取为1:10)。设计的刚性测压模型主要包括反射镜、镜面支撑檩条、檩条支撑桁架、支撑、推杆和连接构造等关键构件。

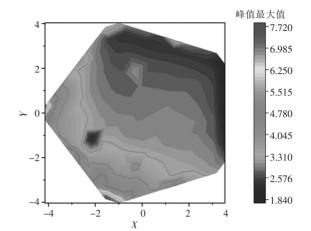
对于定日镜的结构,风洞试验过程中分别获

京が電氣評論 2025.9.25

得了以下几个关键无量纲风致荷载系数:①法向力系数,即垂直作用于定日镜镜面板表面风致力所对应的无量纲系数;②俯仰力矩系数,即在与驱动仰角轴平行的反射器平面内、围绕反射器水平轴风致力矩所对应的无量纲系数;③偏转力矩系数,即在反射器平面内、围绕反射器垂直轴风致力矩对应的无量纲系数;④基底力矩系数,即在结构基底部分、围绕定日镜立柱风致力矩对应的无量纲系数。

基于这些关键风载系数,在实际工程中,可以 根据以下关系计算得到定日镜整体结构在任一来 流风速作用下所承受的风致荷载(包括力和力矩) 大小:

$$F = \frac{1}{2} \rho v_{10m}^2 C_f A K_z K_{zt} K_d I \tag{1}$$


$$M = \frac{1}{2} \rho v_{10m}^2 C_m A K_z K_{zt} K_d I L$$
 (2)

上式中各系数的意义如下:

表 2 各系数的意义

符号	物理意义
F	风致力
M	风致力矩
ho	空气密度
$ u_{10\mathrm{m}}$	10 米高度处的 10 min 平均风速
$C_{ m f}$	与力荷载相关的无量纲系数
C_{m}	与力矩荷载相关的无量纲系数系数
A	反射镜面积
L	反射镜长度尺寸
K_{z}	风压高度变化系数
K_{zt}	地形影响因子
$K_{ m d}$	风向影响因子
I	重要性系数

上述风洞试验结果表明: 当俯仰角较小时,定日镜的抗风能力更好,最不利工况大多是俯仰角为90°的时候;风向角的大多不利工况分布于0°和180°。定日镜整体结构法向力系数最大值2.386,对应工况俯仰角70°,风向角0°;法向力系数最小值-2.173,对应工况俯仰角90°,风向角180°;镜面在边缘处承受较大的极值风压,峰值最大风压系数为7.72,谷值最小风压系数-8.92。

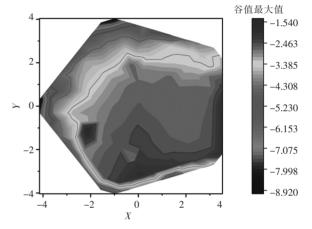
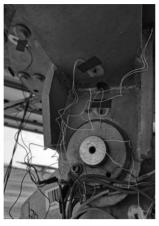



图 5 风洞试验峰值最大值和谷值最小值

3.2 利用自然环境测试风对定日镜性能影响

通过风洞试验,可以获得定日镜承受不同风速 和风向时各部分的物理和力学指标。为获得真实 定日镜在实际运行环境中的性能特性,可以在实际 定日镜的不同部位装帖传感器,通过传感器采集定 日镜结构应变、弹塑性形变、振动特征等开展定日 镜抗风稳定性分析,如图 6 所示,具体监测对象有: ①观测定日镜在不同风速下的宏观状态, 当风速> 20 m/s 后定日镜未发生破损,则判定其抗风能力合 格:如果风速≤20 m/s 出现定日镜出现反射镜破 碎、反射镜支撑檩条变形、支臂变形、驱动变形等现 象,则判定为定日镜抗风能力不达标;②监测结构 应变,将应变片粘贴于承重构件应力较大部位,利 用动态应变仪采集结构应变;③监测结构倾斜,将 加速度传感器和 MEMS 倾斜角度传感器粘贴于立 柱和中心盘表面,根据传感器加速度偏移换算位移 计算出结构偏转角;④监测结构振动,支臂、中心盘 和立柱布设加速度传感器,对采集到的振动数据进 行傅里叶变换后获得结构自振频率。

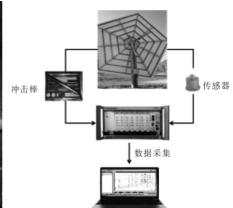


图 6 现场抗风试验

3.2.1 测试期间的风速特征

针对该型号定日镜的抗风试验,自2023年8月 19日起开展了近3个月的连续监测。其中的风速 由就地气象站获取,每天的极大风速数据如图7所 示。试验期间绝大部分天的极大风速介于 10~20 m/s 间。其中在 10 月 11 日和 11 月 4 日风速超过 20 m/s,其中 10 月 11 日两分钟平均风速为 20.03 m/s,极大风速为 20.43 m/s,11 月 4 日 16:42~16: 52 时段最大风速达到第一抗风强度,10 min 平均风 速达 20.38 m/s,极大风速为 22.22 m/s。

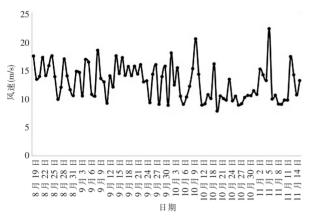
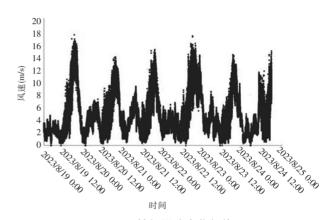



图 7 试验阶段镜场风速统计

试验期间每天风速和风向的变化也具有一定规 律,以2023年8月19~25日为例,风速从上午开始逐 渐增加,到下午5、6点左右达最大值,进入夜间后风 速逐渐减小。每天的风速变化规律如图 8 所示。

试验监测期间的风向,也呈现出较强的规律性 变化,在上午的低风速时段(9 m/s)时,风向以东风 为主,到下午高风速时段后,风向以西北风向为主, 如图 9 所示。

镜场风速变化规律

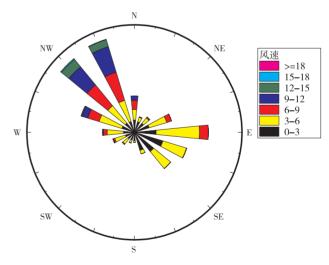


图 9 镜场风向变化规律

在分析不同风速下定日镜的结构关键形变-动 力学响应特征时风速选取依据为:风速分布完整, 风速渐进变化,平滑过渡。8月22日9:40-21:00 时段风速满足上述要求,该时段风速为0.3~17.22 m/s 之间(3 秒),此时段内 9:40 至 15:00 左右,风 速较小,此后风速明显上升,直至17:45分达到17.

京方電氣評論 2025.9.25

22 m/s,于17:00 至19:30 时段内风速持续维持较高水平,而后逐渐减小。风速变化如图10所示。

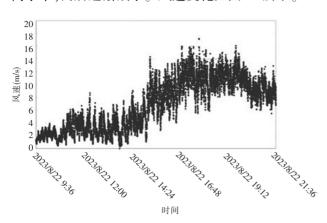


图 10 分析日镜场风速数据

3.2.2 测试期间定日镜宏观形态观测结果

某定日镜结构宏观形态观测结果如表 3 所示,由表可见,该定日镜在 4 级及以下风力时结构稳定,无肉眼可见变形。在 5 级和 6 级风力时定日镜的桁架结构出现轻微的和毫米级的振幅。在 8 级及以上风力时定日镜结构物塑性变形和破损现象出现。

表 3 定日镜随风速的宏观形态变化

等级	结构宏观形态现象
4级以下	定日镜结构稳定,
4级	肉眼难以察觉结构明显位移。
5 级	可见桁架支臂结构微幅摆动。
6级	可见桁架结构摆动增大(毫米级)。
7级	桁架结构摆动约公分级,反射镜面出现微震颤。
8级以上	桁架结构公分级摆动和镜面震颤加剧,定日
0 秋以上	镜整体结构均无宏观破坏或塑性变形。

3.2.3 测试期间定日镜监测结果

除宏观观测外,还利用多种传感器从位移、应变和动力学方面对定日镜的支臂、中心盘和立柱三处关键结构在不同风荷载作用下的响应数据进行监测。同时还对定日镜结构在强风荷载下(20 m/s)的安全性进行评估,据此获得结构对风荷载变化敏感的关键静-动力学指标响应阈值。通过对定日镜在自然风荷载作用下的倾斜、振动和动态应变响应特征进行分析,获得定日镜关键部位在不同风荷载下的关键指标响应阈值,包括:振幅、偏转角、应变和自振频率,支臂、中心盘、立柱的关键技术指标分别如表4至表6所示。

表 4 定日镜支臂关键指标统计

风力等级	振幅(mm)	频率(Hz)
四级以下	0. 17~0. 75	
四级	0.5~2.63	
五级	1.8~7.23	3, 22~3, 51
六级	2.2~9.88	3. 22~ 3. 31
七级	5. 0~15. 87	
八级	6.05~25.43	

表 5 定日镜中心盘关键指标统计

교소	KK Litt	心 # # ())	☆ (1)(1)	मं कं 🎱 ()	歩歩/エ)
1X()]	等级	偏转角(°)	巡变①(με)	应变②(με)	
四级	以下	0. 011~0. 022	20~22	15~22	
四	级	0.009~0.023	21~34	15~26	
五.	级	0. 027 ~ 0. 041	23~38	17~38	1 88~1 96
六	级	0. 053~0. 123	36~43	20~45	1. 88 ~ 1. 90
七	级	0.075~0.174	37~53	38~52	
八	级	0.043~0.271	-	-	

表 6 定日镜立柱关键指标统计

风力等级	振幅(mm)	偏转角(°)	压应变(με)	拉应变(με)	频率(Hz)
四级以下	0.56~2.62	0.010~0.047	12~18	16~23	
四级	1.73~2.79	0.031~0.050	16~24	22~32	
五级	1.50~3.24	0.027~0.058	30~48	35~46	1 10 1 17
六级	2.01~4.08	0.036~0.073	40~60	36~60	1. 10~1. 17
七级	1.95~4.36	0.035~0.078	44~65	48~155	
八级	2.16~4.79	0.039~0.086	-	-	

由上可知,定日镜结构无明显宏观破坏和塑性 变形。以结构偏转引起的光斑极限偏移量、支臂摆 振作用下反射镜极限挠度作为控制阈值,在试验期 间最大风荷载时(十分钟平均风速约 20.43 m/s)立柱偏转角满足控制阈值 1.5 mrad(0.086°)的概率为 99.33%、中心盘偏转角满足 2.9 mard(0.166°)

控制阈值的概率为97.86%。

由上述实际测试结果可见,不同的风速大小对定日镜结构影响程度不同,定日镜各部件的振幅和偏转角度都随风速的增高而变大,这些技术指标增大后导致定日镜的面型和跟踪误差都会相应增加,在设计定日镜时需严格控制定日镜最高允许工作风速下结构变形量以保证定日镜性能。

3.3 风对吸热器效率影响

塔式太阳能热发电吸热器目前通常采用熔盐作为载热介质,吸热器是由多个单模块组成的多边形结构,为均衡各个支路的得热量,各模块之间通常采用串并结合的方式。在北半球,向阳面投射的能量大,吸热器中熔盐采用北进南出的方式,吸热器单模块由多根小管径薄壁金属管并联组成。吸热器在运行时,接收镜场汇集的太阳辐射,太阳辐射有少量被反射到大气中损耗,剩余绝大部分被吸热管吸收。受热面将吸收的太阳能加热管内工质后转换为热能。被加热的吸热管同时还会以对流、辐射、导热方式热损失到环境中,其中的导热损失所占的比例较小可忽略不计。

吸热器的热效率是其重要衡量指标之一,影响吸热器热效率的主要因素有吸热器受热面积、吸热器表面温度、风速大小等,一旦这些参数确定后,吸热器散热损失与其运行负荷率无关。例如,对于某吸热器,其吸收率为0.96、发射率为0.83、吸热器表面热流密度520 kW/m²,吸热器受热管表面平均温度为585℃时,不同风速和负荷率时,吸热器热效率变化曲线如图11所示。

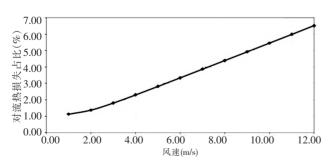


图 11 吸热器在不同风速和负荷率下的热效率变化曲线

随着风速从 0 m/s 增加到 12 m/s 时,吸热器额定工况的热效率从 90.05 %下降到 83.6 %,额定负荷时吸热器的对流散热率从 1.12 %上升到 6.53 %,风速增大后对流热损失显著增加。吸热器负荷

率越低随风速增加后其热效率下降越显著,因此, 可通过增加吸热器在高负荷率的运行时间以提高 其年均热效率。

4 聚光集热系统主设备设计风速选取原则

高风速会导致定日镜跟踪和面型误差增加,这些误差值增大后,会使得镜场汇聚后的热流密度分布范围和分布均匀性都发生较大变化,可能会导致吸热器受热面或防护区出现超温,因此,需要确保定日镜在设计运行风速范围内的跟踪和面型误差都具有较高的一致性。高风速同时也会导致熔盐吸热器对流散热损失显著上升,特别是在边界层分离点等处对流散热损失更是成倍增加,加之定日镜光斑误差增大后引起吸热器表面功率偏差增大,当风速超过一定数值后,可能导致吸热器散热损失超过镜场入射到吸热器表面的热量,此时会出现熔盐对镜场入射到吸热器表面的热量,此时会出现熔盐对镜场入射到吸热器表面的热量,此时会出现熔盐对流散器出现凝固风险。此时需要明确定日镜最大允许运行风速(通常称为定日镜的运行风速)和吸热器最大允许运行风速。

同时,对于定日镜而言,其在工作状态下每台定日镜的姿态不同,且需要随太阳位置运动而变化;在极端风载荷状态时,可能会导致定日镜金属结构件出现塑性变形、反射镜出现破损等设备事故,一是需要明确定日镜在最不利抗风姿态下允许承受的最大风速(通常称为定日镜的回位风速),二是需要明确定日镜在最佳抗风姿态下允许承受的最大风速(通常称为定日镜的生存风速)。

4.1 定日镜设计风速选取原则

如前述,定日镜需要考虑运行、回位、生存三种 风速。运行风速由定日镜的刚度决定,回位和生存 风速由定日镜的强度决定。

为提高定日镜的刚度和强度,需要相应地提高定日镜结构和玻璃镜刚度及强度,同时降低玻璃反射镜的载荷。在确定定日镜的设计风速时需结合项目风资源特性,充分论证定日镜的技术经济性,确定合理的设计风速。一方面要避免出现因设计风速过小导致定日镜在多风环境中有效运行时间不足而降低经济性;同时也要避免出现因设计风速过大带来的定日镜投资成本显著增加现象。

東テ電氣評論 2025.9.25

此外,定日镜的运行风速还与 DNI 重合度有 关。光热电站需要成千上万台定日镜组成镜场联 合运行,镜场效率受太阳高度角方位角影响,特别 是太阳高度角对镜场效率影响权重因子最大,一般 地, 当太阳高度角在 20°以上时镜场具有较高的效 率。因此,在分析风速对定日镜的影响时,可着重 对太阳高度角在 20°以上时段内的风速大小和出现 频率进行分析;然后对该时段内的 DNI、风速、定日 镜不同抗风值下的成本、大风弃光率、集热量等这 些指标进行优化设计分析,确定最具经济性的风速 设计值。

4.2 吸热器关键设计参数确定原则

如前述,大风一是导致吸热器对流热损失显著 增加,二是可能会导致熔盐吸热器出现局部超温、 局部凝固问题。

在给定风速情况下,通过提高吸热器表面设计 热流密度可降低吸热器的散热面积,这有助于降低 吸热器的对流、辐射热损,比如对某额定热功率为 350 MWt 熔盐吸热器分别以 460~580 kW/m² 表面 热流密度设计时,其在不同风速下的散热功率与风 速的关系如图 12 所示。

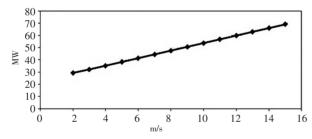


图 12 相同输出功率时吸热器散热功率与面积关系曲线

当吸热器设计表面热流密度增加时,吸热器 承受的热流密度整体增加会导致吸热管表面温度 增加,但因受热面积减小又使得受热管内的工质 流速增加而增加了熔盐的冷却能力,这会大部分 抵消因热流密度增加时导致的吸热器受热面金属 温度升高现象,由于热流密度增加导致的受热面 温度升高而带来的热损失增加可忽略不计。在其 它条件相同的情况下,散热面积大小是影响吸热 器热效率的主要因素。因此通过提高吸热器表面 热流密度可有效提高吸热器的热效率,表7为相 同热功率的熔盐吸热器在不同设计热流密度下的 散热损失。

表 7 在 2 m/s 风速下某 400 MWt 熔盐吸热器 不同表面热流密度及其散热功率

输出 平均热流 吸热 吸热器 散热 反射 功率 密度 器高 直径 损失 损失 (MW) (kW/m²) (m) (m) (MW) (MW) 400 580 16 15.3 26.28 26.7 400 560 16.5 15.5 27.46 26.7 400 540 16.9 15.7 28.95 26.7 400 520 17.3 15.9 30.02 26.7 400 500 17.8 16.2 31.28 26.7 400 480 18.5 16.7 33.73 26.7									
400 560 16.5 15.5 27.46 26.7 400 540 16.9 15.7 28.95 26.7 400 520 17.3 15.9 30.02 26.7 400 500 17.8 16.2 31.28 26.7	功率	密度	器高	直径	损失		总损失 (MW)		
400 540 16.9 15.7 28.95 26.7 400 520 17.3 15.9 30.02 26.7 400 500 17.8 16.2 31.28 26.7	400	580	16	15.3	26. 28	26. 7	52. 98		
400 520 17.3 15.9 30.02 26.7 400 500 17.8 16.2 31.28 26.7	400	560	16.5	15.5	27.46	26.7	54. 16		
400 500 17.8 16.2 31.28 26.7	400	540	16.9	15.7	28.95	26.7	55.65		
	400	520	17.3	15.9	30.02	26.7	56.72		
400 480 18.5 16.7 33.73 26.7	400	500	17.8	16. 2	31.28	26.7	57.98		
	400	480	18.5	16.7	33.73	26.7	60.43		
400 460 18.7 16.5 33.69 26.7	400	460	18.7	16.5	33.69	26.7	60.39		
400 440 19.0 17.2 35.48 26.7	400	440	19.0	17.2	35.48	26.7	62. 18		

5 总结和建议

为确保聚光集热吸热系统在安全前提下具有 相对更好的经济性,应在设计阶段确定合适的设备 设计风速、运行阶段采用合理的运行控制策略措 施,据此提出如下建议。

- (1)对项目地的风速特性及其与 DNI 重合度的 分析,再结合定日镜成本和集热量等确定出定日镜 的设计风速。
- (2) 需选择跟踪和面型性能一致性优异的定日 镜设备,这不仅可有效提高聚光集热系统的运行效 率,大大降低吸热器系统的运行安全风险。
- (3)通过对镜场和吸热器性能进行详细充分计 算的基础上,保证吸热器壁温安全前提下,适当提 高吸热器表面设计热流密度,可以有效提高吸热器 的热效率。
- (4) 当聚光集热系统在较高风速下运行时,可 采用定日镜跟踪目标点动态调节措施,适当将定日 镜的聚焦目标点向吸热器受热面中部区域聚集,避 免防护区过热风险。
- (5)当风速超过一定值后,定日镜性能衰减显 著增加带来运行风险,而且吸热器的散热损失也可 能会超过镜场入射到吸热器表面的热量,此时吸热 器变成了散热器导致熔盐凝固风险,建议停止运行。

参考文献:

[1] 丁路,肖欣悦,华文瀚,等. 塔式太阳能吸热器不同方位高空风 速模拟计算及影响分析[J]. 发电技术,2020,42(6):707-714

激光焊在管子与管板焊接上的应用研究

袁浩1,2 李占雷2 银润邦2 张书玮2 刘国辉2 李勇1,2

1. 能源清洁低碳热转化利用技术与装备四川省重点实验室,成都 611731; 2. 东方电气集团东方锅炉股份有限公司,四川 自贡 643001

摘要:分别采用大光斑激光焊和光束摆动激光焊对管子与管板实施焊接,对这两种焊接方法的焊接接头的表面质量、显微组织进行了对比分析。结果表明,光束摆动和大光斑都能提高激光对装配间隙的容忍性;光束摆动的焊缝表面成形质量好于大光斑焊缝表面质量,且光束摆动对气孔有一定抑制作用;在相同熔深下,采用光束摆动的激光焊消耗的激光功率更低。光束摆动激光焊的焊缝渗透检测、组织和力学性能测试结果表明,激光焊焊接接头的硬度和强度均高于母材,证实激光焊适用于管子与管板焊接。

关键词:管子与管板;激光焊;大光斑;光束摆动

中图分类号:TG456.7 文献标识码:A

文章编号:1001-9006(2025)05-0076-04

Application Research of Laser Welding in Welding on Tubes and Tube Plates

YUAN Hao^{1, 2}, LI Zhanlei², YIN Runbang², ZHANG Shuwei², LIU Guohui², LI Yong^{1, 2}

(1. Clean Energy Low-Carbon Thermal Utilization Technology and Equipment Key Laboratory of Sichuan Province, 611731, Chengdu, China;
2. Dongfang Boiler Group Co., Ltd., 643001, Zigong, Sichuan, China)

Abstract: The tubes and tube plates jiont were welded by beam weaving laser welding and large spot laser welding, respectively, and the surface quality and microstructure and of the joints were investigated. It was found that good adaptability for the assembling clearance is obtained using beam weaving laser welding and large spot laser welding. The surface quality of beam weaving laser welding's joints is better than large spot laser welding'jionts. And beam weaving laser welding can remarkably restrain pores. At the same welding depth, the laser power consumed by beam weaving laser welding is lower. The penetrant testing, microsturcture and mechanical properties of the beam weaving laser welding's joint was investigated, the results show that the hardness and strength of joint is higher than that of base metal, it proves that laer welding is suitable for tubes and tube plates welding.

Key words: tubes and tubeplates; laer welding; beam weaving laser welding; large spot laser welding

管子-管板焊是换热器产品制造中最核心的一项关键技术,管子-管板焊的质量直接决定了整台换热器的制造质量。目前管子-管板焊接通常采用钨极氩弧焊工艺,换热器管板焊接的焊缝为圆形,焊接状态为全位置焊接,需要根据不同焊接位置设置多个分段焊接参数,焊接速度较慢[1],制造效率很

低,而且焊缝根部一直存在未熔合问题。

激光焊接作为一种能量集中、精度高、变形低和高速度的焊接方法,在工业得到越来越广泛的应用。激光焊与氩弧焊相比,能量密度高,可以一次性穿透较厚试板而无需制备焊接坡口,不仅大大提高了焊接速度,还可以得到高强度、小变形的

收稿日期:2025-05-08

作者简介:袁浩(1989—),男,2016 年毕业于昆明理工大学材料工程,硕士研究生,高级工程师。现任职于东方电气集团东方锅炉股份有限公司,主要从事锅炉、压力容器工艺技术与研究、自动化设备集成与应用工作。

高质量接头[2]。本文通过管子与管板的激光焊接 工艺试验,对焊接接头进行检测和分析,确定合理 的焊接工艺,为管子与管板的激光焊接积累了实 践经验。

1 试验材料与方法

1.1 试件准备

为进行管子-管板激光焊的工艺试验,首先需要

准备管板试件(Q345R)、换热管(SA-556C2),管子 与管板成分如表1所示。

按图 1 进行管板的下料及钻孔, 管板加工中应 注意去除管板孔边缘的毛刺。焊接试验采用不填 丝的激光焊方式进行焊接,管板不开坡口,换热管 与管板采用的是平齐式结构,换热管与管板的装配 见图 2 所示。

表 1 管子与管板的化学成分

										Wt /C
材料	С	Si	Mn	P	S	Cr	Ni	Mo	Ti	Al
Q345R	0. 16	0. 24	1. 35	0. 015	0.004	0. 12	0.01	0.002	0.01	0.033
SA-556C2	0.15	0. 27	0. 89	0.010	0.004	/	/	/	/	/

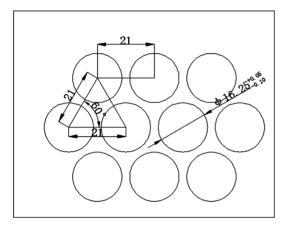


图 1 管板加工图

管板

图 2 管子-管板装配图

1.2 焊接试验

由于激光焊对试件表面的清洁度程度要求,所 以管板和换热管必须在焊前采用砂纸对其表面进 行打磨并且使用丙酮溶液进行彻底清洗,去除铁 锈、油污和其他外来杂质。因为管板和管子之间存 在间隙,装配间隙最大可以达到 0.3 mm,激光光斑 太小会造成焊穿的现象(如图 3 所示),因此本试验 采用试验中采用了两种方式增加焊接区域面积。 一是通过改变离焦量和提高功率的方法增大光斑 尺寸:一种是采用激光束摆动实现焊接区域面积的 增大。以上两种焊接参数见表 2。

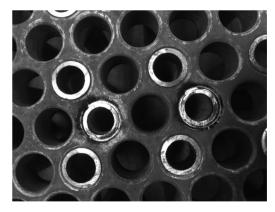
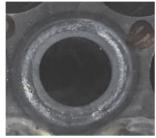


图 3 激光焊焊穿图

表 2 焊接参数


试样	功率 W	速度	离焦	光斑大小	摆动轨迹	摆幅	摆动速度	气流量	保护气体
风什	切竿 W	m/min	mm	mm	法列机逊	mm	mm/s	L/min	体护气件
大光斑	2 600	1	+2	0.9	/	/	/	11	Ar
摆动	1 700	1	0	0.3	圆	0.7	100	11	Ar

从图 4 可以看出,采用摆动技术的焊缝表面成 形质量优于大光斑的焊缝表面成形。从图 5 焊缝剖

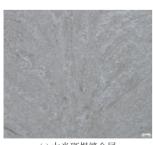
面图看出,大光斑激光焊的焊缝截面呈现为上大下 小的"V形",摆动激光焊的焊缝截面呈现为上下宽

度相差不大的"U形"。从图 5 中可以看出,两种方 法的焊缝熔深几乎相同,大约为 3.5 mm 左右,大光 斑的焊缝表面宽度为 3.09 mm,摆动的焊缝表面宽 度为 2.03 mm。在图 5 中可以发现大光斑焊缝中存 在气孔,摆动焊缝中没有气孔。清华大学的赵琳[3] 等人通过研究发现在低碳钢的激光焊接中,光束摆 动可以减少和消除气孔。

(a) 大光斑焊缝表面成形图

(b) 摆动焊缝表面成形图

图 4 焊缝表面成形图



(a)大光斑焊缝剖面图

(b)摆动焊缝剖面图

图 5 焊缝剖面图

图 6 为大光斑和摆动焊缝的金相显微组织图, 大光斑的焊缝主要为两侧母材向焊缝中心生长具 有明显方向性的柱状晶组织,这是因为垂直于熔合 线的温度梯度最大,而晶粒沿着散热最快的方向生 长;有摆动的焊缝因为热源在焊接过程中一直在变 化,熔池中的温度也随之变化,导致熔池的最大散 热方向也在不断变化,从而打乱了晶粒的生长方 向,因此摆动的焊缝中没有明显方向性的柱状晶。

(a) 大光斑焊缝金属

(b) 摆动焊缝金属

图 6 焊缝金属组织图

通过以上分析可以看出,改变离焦量和提高功 率的方法虽然能够增大光斑尺寸,但是也会牺牲一

部分激光功率。而通过反射镜协同实现激光束摆 动的方法虽然没有使光斑尺寸发生变化,但是不会 造成能量的损失,激光光束的摆动能够通过增加激 光焊接的区域面积来提高激光焊对间隙的容忍性, 并且光束摆动还能减少和消除气孔,故后续试验中 采用更适合产品生产的摆动光束进行管子-管板试 样的激光焊接。

2 试验结果与分析

2.1 表面无损检测

管子-管板试件焊接完成后,对焊缝接头进行 100 %渗透探伤,确认焊接接头表面没有裂纹、气孔 等缺陷的存在。检验结果合格,符合标准 NB/T 47013.5—2015

2.2 目视和宏观金相检测

图 7 为光束摆动激光焊焊缝表面成型和焊缝剖 面图,从图中可以看出焊缝表面成形良好,不存在 咬边、飞溅等缺陷,焊缝横截面呈现"酒杯形",测量 16 个截面焊缝熔深均值为 3.1 mm。焊缝横截面上 可以看出部分焊缝上表面有凹陷的现象,出现这样 的原因主要是因为激光焊接过程中,氩气作为保护 气体会对焊缝熔池产生较大冲击力,从而造成熔池 中液态金属在外部气体和影响下向下部和向两侧 流动,最终造成焊缝表面的凹陷。

(a) 焊缝表面成型

(b) 焊缝横截面

图 7 摆动激光焊焊缝

2.3 组织和硬度检测

焊接接头的硬度分布如图 8 所示,焊接接头中 硬度最高值出现在热影响区,平均值为 444 HV。焊 缝硬度略低于热影响区硬度,平均值为 433 HV。母 材的硬度远低于焊接接头硬度,平均值为 169 HV。

通过 Yurioka^[4]的经验公式 HM = 884C+294(式 中,HM 为马氏体的显微硬度;C 为固溶碳含量)计 算,马氏体的显微硬度为 431 HV,试验数据和计算 数值的对比表明焊缝中为马氏体相(图9)。

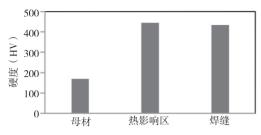


图 8 焊接接头硬度分布



图 9 焊缝组织图

激光自熔焊的焊缝与母材的化学成分基本一致, 焊缝的焊接速度快,熔池高温停留时间短,冷却速度 快,更容易形成淬硬组织,并且冷却速度快会使得焊 缝中的微量元素来不及以析出物的形式析出,从而形 成固溶强化提高焊缝硬度。由于母材的组织主要为 铁素体与珠光体(图 10),故其硬度较低。

图 10 母材组织图

2.4 拉脱力试验

拉脱力测试用于检测管子-管板焊接头的抗拉强度,断裂位置在管子上。测得接头拉脱力为51 695 N,抗拉强度为 522.2 MPa,该结果大于ASME标准 SA-556 中 C2 级规定的最小抗拉强度480 MPa,所以该接头的强度能够满足技术要求。

3 结语

- (1)光束摆动激光焊接能够提高装配间隙的容忍性,焊接成形良好,对实际生产具有重大意义。
- (2)管子-管板焊接接头拉脱力试样的断裂位 置位于管子,表明焊缝的强度高于母材,焊接接头 的抗拉性能良好。
- (3)激光自熔焊接接头为马氏体,硬度高于母材硬度。
- (4)通过焊接试验及相应的性能检测,证明激光焊可用于管子-管板焊接。

参考文献:

- [1] 王振民,张栋,李晋,等. 换热器管板的全位置自动化焊接工艺 [J]. 华南理工大学学报(自然科学版),2010,38(5):100-104
- [2] 张凤英,杨雪坤,吴博,等. 1Cr18Ni9Ti 激光焊与氩弧焊的显微组织及力学性能对比研究[J].应用激光,2015,35(4);461-466
- [3] 赵琳,张旭东,陈武柱,等. 光束摆动法减小激光焊接气孔倾向 [J]. 焊接学报,2004(1):29-32+2
- [4] Yurioka N, Okumura M, Kasuya T, et al. Prediction of HAZ Hardness of Transformable Steels [J]. Metal Construction, 1987, 217:446-452

一种基于级联技术的高压直挂储能系统设计

谭建军1 彭伟2 王洋1

1. 东方电气自动控制工程有限公司,四川 德阳 618000; 2. 东方日立(成都)电控设备有限公司,成都 610000

摘要:针对工业园区中设备较多,具有用电功率大、高负荷时间长、设备能耗大等特点,工业园区在用电高峰期易发生停电事故导致停工减产,从而增加工业用户经济损失。针对上述问题,本文研究一种级联型高压直挂储能系统,高压直挂储能系统可以存储光伏发电系统产生的多余电力,在用电高峰时段释放,这样不仅能够保障园区用电稳定,缓解电网压力,还可在紧急情况下提供备用电力以保证园区的正常运转。同时,我国工业园区电价差较高,适于储能项目峰谷套利。高压直挂储能系统能给园区企业带来一定的经济效益和环境效益,具备良好的推广前景。

关键词:级联型;直挂;峰谷套利

中图分类号:TM73

文献标识码:A

文章编号:1001-9006(2025)05-0080-06

A Design of A Straight-hanging Energy Storage System Based on High-voltage Cascade Technology

TAN Jianjun¹, PENG Wei², WANG Yang¹

(1. Dongfang Electric Automatic Control Engineering Co., Ltd., 61800, Deyang, Sichuan, China;

2. Dongfang Hitachi (Chengdu) Electric Control Equipment Co., Ltd., 610000, Chengdu, Sichuan, China)

Abstract: In view of the fact that there are many equipment in the industrial park, which has the characteristics of high power consumption, long load time, and large energy consumption of equipment, the industrial park is prone to power outages during the peak period of electricity consumption, resulting in shutdown and production reduction, thereby increasing the economic losses of industrial users. In order to solve the above problems, this paper studies a cascaded high-voltage direct-hung energy storage system, which can store the excess power generated by the photovoltaic power generation system and release it during peak hours, which can not only ensure the stability of power consumption in the park and relieve the pressure on the power grid, but also provide backup power in case of emergency to ensure the normal operation of the park. At the same time, the electricity price spread of China's industrial parks is relatively high, which is suitable for peak-to-valley arbitrage of energy storage projects. The high-voltage direct-hung energy storage system can bring certain economic and environmental benefits to the enterprises in the park, and has a good promotion prospect.

Key words: casced type; straight hanging; peak valley arbitrage

根据国家电网的测算,2035年前,风、光装机规模分别达到7亿、6.5亿千瓦,受风资源、太阳能资源波动的影响,电力波动预计将分别达到1.56亿、4.16亿千瓦,超出现有电网的调节能力。由于现有

电网的调节能力不足,迫切需要重新构建电网调峰体系,增加电网调节能力,需具备能够调节新能源波动带来的5亿千瓦左右的日电量波动的能力。在新能源发电装机快速增的大背景下,需要大力发展

收稿日期:2025-06-04

作者简介: 谭建军(1986—),男,2009 年毕业于北京人文大学机电一体化工程专业,本科,工程师。现任职于东方电气自动控制工程有限公司研发中心从事产品研发工作,主要研究方向为太阳能发电、储能、SVG等新能源技术。

储能技术,提供更多的储能设备,提高电网的稳定性,减小新能源电力波动对电网的冲击。

目前,电化学储能依据电池储能系统能量变换设备 PCS 的不同,电化学储能系统主要分为组串式储能系统、集中式储能系统和基于级联技术^[1]的高压直挂储能系统三种系统解决方案。

高压直挂储能系统^[2]采用先进的主动均衡技术,在应用层、换流链层、PCS单元层三个层次统筹兼顾与分层管控,实现高水平电池组 SOC 均衡性能,解决了电池过充过放和环流等影响锂电池安全的主要问题。高压直挂储能相比于传统配置升压变的储能方式具有安全性能高、效率效益高、兼容性能强、性价比高等优势。

1 高压直挂储能系统应用

工业园区中设备较多,具有用电功率大、高负荷时间长、设备能耗大等特点,储能系统可以存储电网中多余的电力,在用电高峰时段释放,这样不仅能够保障园区用电稳定,缓解电网压力,还可在紧急情况下提供备用电力以保证园区的正常运转。同时,我国工业园区电价差较高,适于储能项目峰谷套利。

以应用于位于重庆市的页岩气油气开采工业园区工程为例,2 套 5 MW/10 MWh 级联型储能系统从 35 kV(低电价电网)吸收电能将储能系统充电至满电,在工业园区高负荷阶段,又将吸收的电能回馈至 10 kV(高电价电网)负载电网,进行削峰填谷,降低园区用电成本,并充当后备电源应急,如图 1 所示。

2 高压直挂储能系统设计

2.1 系统架构

项目设计的储能系统功率和容量为 5 MW/10 MWh,其中变流器 PCS 采用高压直挂方案,变流器 为三相星形高压系统,每相由多个 PCS 和储能电池 组构成的储能单元串联而成。变流器三相输出通过电抗器直接并入电网,如图 2 所示。输入配置充电回路,由充电电阻和断路器构成,启动时由充电电阻对变流器进行充电,充电完成后用主回路开关短接掉充电电阻。

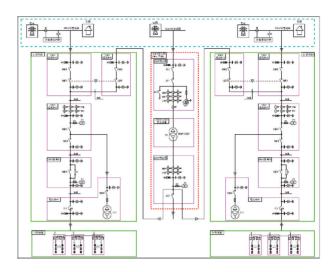


图 1 园区单线图

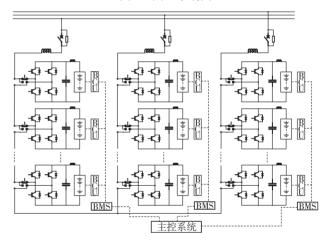


图 2 系统架构框图

2.2 储能变流器 PCS

储能系统变流器为级联型结构,每个 PCS 为单相两电平结构,其原理图如图 3 所示。

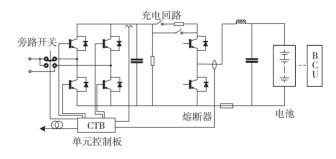


图 3 PCS 原理图

PCS 直流侧采用薄膜电容器进行平波和缓冲, 直流侧电压波动率小于 5 %。直流侧配置可选的双 向 DC/DC 回路,可以兼容低电压的电池,使 H 桥直 流回路电压保持相对稳定。直流侧配置充电回路, 当变流器在黑启动时,首先用储能电池通过充电电

阻对直流侧电容充电,直到直流电压达到充电阈值 时,充电回路的开关将充电电阻短接,变流器即可 正常工作。当储能电池电压不足,需要工作在充电 模式时,变流器先从交流侧对直流侧的电容进行充 电,同时用内部的充电电阻对电池的充电进行限 制,当直流电压达到阈值时,再合上充电开关,进入 正常的充电模式。交流输出侧配置旁路开关,当 PCS 或对应的电池簇故障时,可以通过开关将对 应的模组进行旁路,其余 PCS 可以继续工作。旁 路开关采用两极式结构,正常运行和旁路运行进 行机械互锁,确保在运行中即使在开关误动作,也 不会将 PCS 短路,造成严重故障。PCS 控制板采 用光纤与主控系统连接,采用串联通信方式。控 制板上集成 IGBT 驱动器,可以直接驱动 PCS 内四 只IGBT开关。控制板具备直流母线电压和直流 电流的检测功能,用于对电池簇进行充放电管理。 控制板具备旁路开关的驱动和位置检测功能,用 于 PCS 故障旁路功能。控制板需要对 PCS 的硬件 进行故障监测和保护,主要功能包括:与主控的光 纤通信故障、过热故障、直流过压故障、直流欠压 故障、IGBT驱动故障、电池断路故障、充电回路异 常故障。

2.3 控制系统

控制系统采用1主3从的控制架构,如图4所 示。主控制器完成整机并网算法及相间均衡控制, 从控制器完成各相控制、DC/DC 控制升压控制及相 内均衡控制等功能。单套控制器包括两片 ARM 和 一片 FPGA,如图 5 所示。ARM1(CPU1)负责各类 通讯控制、数据存储、人机界面连接等功能,属于辅 助控制器。ARM2(CPU2)主要负责控制电力电子 产品的核心控制,包括设备的基本控制逻辑,控制 算法,故障保护等。FPGA 主要负责两个 ARM 控制 器的数据交换, ADC 采样控制, 高速光纤通信等。 控制器具有丰富的工业接口,包括 RS485、RS232、 CAN、USB、以太网等硬件接口,以及 MODBUS、 PROFIBUS、DEVICENET、TCP/IP 等软件协议。可 满足储能变流器与上层 EMS 和下层 BMS 之间的通 讯需求,还具备挂接更多子模块或其它功能设备的 能力。

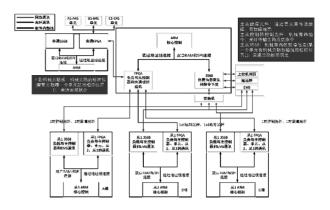


图 4 控制架构

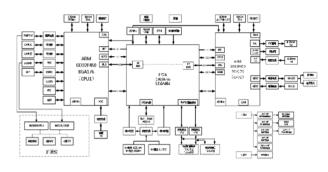


图 5 控制器框图

2.4 散热系统

由于锂离子电池及 PCS 功率密度的不断提升,传统强制风冷已满足不了散热要求。主动水冷散 热指使用液体在泵的驱动下进行循环带走水冷板 或发热器件(液体直冷)上的热量,液体中的热量经 水冷系统中的水风或水水换热器传递到空气或工业用水中,反复循环,实现对发热器件的散热。为提高水冷散热的效率,需要提高水与发热器件的换热系数,如:流道设置扰流装置,变层流为湍流;增加冷却液流量;选用粘度低、热容高的冷却液;选用导热系数高的材质制作水冷板。由于液体的热容大于空气,所以水冷散热能够承受短时间的热量波动而不引起温度变化,满足电力设备的短时过载要求。

由于整个系统是高电压,为防止个部件间放电引起绝缘损坏,就要求冷却液的导电率极低,但水冷设备中与水接触的零部件会持续缓慢的向液体中释放离子,引起导电率的变化,要消除这些离子,就需要在系统中增加去离子回路,以吸收不断析出的离子,稳定液体电导率。

为适应环境的温湿度变化,散热系统还需具备

加热除湿功能。电加热系统置于主循环回路,用于当供水温度接近凝露温度时对冷却介质进行温度补偿,防止凝露。

为降低电池 PACK、PCS 间的温度差异,三级管路设计为并联,保证供水温度一致,减小热堆积,如图 6 所示。

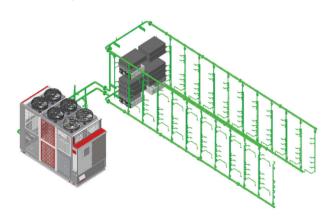


图 6 冷却系统

2.5 消防系统

电化学储能舱消防技术方案以"早发现、早处置"为原则,提倡对储能舱内锂电池热失控初级阶段及时预警和精准抑制处理,在抑制火灾的情况下,将电化学储能舱火灾造成的损失尽可能减小。

电化学储能舱灭火系统主要由两个方面组成 分别为:火灾探测和火灾灭火(火灾抑制)。在电池 舱火灾探测方面, 摒弃了通用的整个空间布置烟 感、温感的方法,采用温感、CO 二合一复合火灾探 测器安装于每个电池包,超前探测电池包内的温度 和一氧化碳指标参数,同时在电池舱顶部均匀布置 6个五合一复合火灾探测器(五合一:氢气、一氧化 碳、VOC 气体、感烟、温度),检测整个电池舱空间内 温度、一氧化碳、氢气、电池液泄露气体、烟雾等指 标,并且通过综合算法进行判断。在电池舱灭火方 面,采用储压式全氟己酮灭火装置,装置采用全氟 己酮灭火介质,当发生电池包热失控时将灭火剂输 送至电池包内部,并进行多次点喷。另外整舱设置 水消防系统,采用外部消防水源,必要时手动接入, 对整舱进行持续降温抑制,严防热失控蔓延和扩 散,如图7所示。

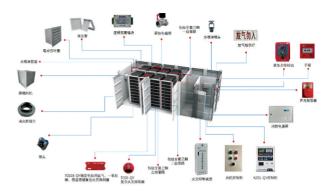


图 7 消防系统

3 仿真验证

3.1 控制系统仿真

为验证系统稳定可控,需要测试各模块的输入输出正确性和基本功能,测试各模块的运行时长、资源占用情况,测试调度程序的逻辑是否正确,测试软件的长期运行稳定性。测试语言:C语言,测试编译工具:GD32EclipseIDE_v1.6.3,输出端口:RS232,上位机显示界面:仿真机自带软件 SIM Analyse,测试工具:半实物仿真机等。

有功功率和无功功率控制检测,测试程序的功率控制精度。连接半实物仿真机,无功设置为0,给定有功20%pn启动并逐步增加至100%pn,判断功率波形,如图8所示;有功设置为0,给定无功20%pn启动并逐步增加至100%pn,判断功率波形,如图9所示。功率外环的控制精度均达标。

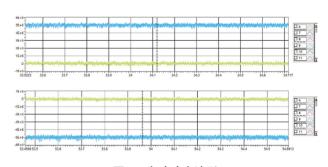


图 8 有功功率波形

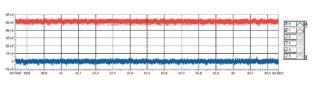
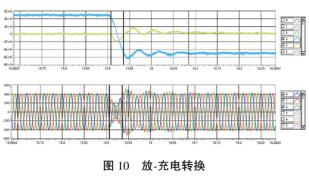



图 9 无功功率波形

充放电转换时间测试,运行在 100 % pn 的放电

状态,设置 100 % pn 的充电,观察转换时间,如图 10 所示;运行在 100 % pn 的充电状态,设置 100 % pn 的放电,观察转换时间,如图 11 所示。转换时间均为 29 ms,满足充放电时间<50 ms 的要求。

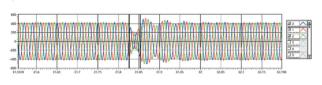


图 11 充-放电转换

相间直流母线电压均衡控制测试,从启动开始,空载电压调整到8500~12000V,记录相间电压最大的电压偏差率,如图12所示。测试12000V下,Q=-5000~+5000kW相间电压最大的电压偏差率,如图13所示。相间电压均衡控制最大偏差率为4.1%,相间电压均衡控制达到预计的效果。

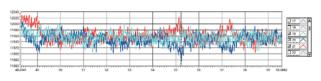


图 12 相间电压偏差率(不带功率)

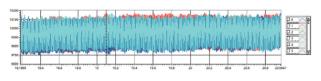


图 13 相间电压偏差率(带功率)

相内直流母线电压均衡控制测试,从启动开始,空载电压调整到8500~12000V,记录不同电压等级下相内电压最大的电压偏差率,如图14所示;测试12000V下,Q=-5000~+5000情况下相内电

压最大的电压偏差率,如图 15 所示。相内电压均衡 控制最大偏差率为 8.2%(所有单元电压的最大值 与最小值偏差),考虑到仿真机建模方式带来的误 差和扰动,当前的相内电压均衡控制达到预计的 效果。

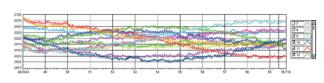


图 14 相内电压偏差率(不带功率)

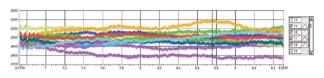


图 15 相内电压偏差率(带功率)

3.2 散热系统仿真

利用有限元分析软件在进行仿真前简要介绍 一下 CFD,其基本原理是数值求解控制流体流动的 微分方程,得出流体流动的流场在连续区域上的离 散分布,从而近似地模拟流体流动情况^[3]。

在 CFD 软件中进行模型建立、参数设定、网格划分、求解等步骤后,经后处理得出压力云图(如图 16 所示)与速度云图(如图 17 所示)。

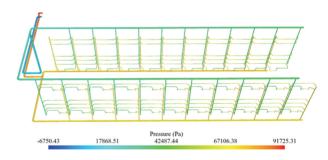


图 16 压力云图

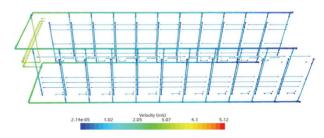


图 17 速度云图

由 CFD 软件中设定的流量检测点得出: PACK 中流量最小为 6.25 L/min,大于 6 L/min 的流量要求: PCS 中流量最小为 5.42 L/min,大于 4 L/min 的

流量要求;系统总压降为88.07 kPa,满足水泵不大于200 kPa的流阻要求。

4 结语

新型高压直挂式储能技术,与常规储能比,减少了变压器等中间环节,通过 PCS 的级联直接连接到中高压电网,减少了转换过程中的能量损失。通过同步电压源的构建,实现了与同步机类似的电压源外特性,具备了在扰动前、中、后各阶段稳定电力系统的能力。同时,电站更接近主网,具有更优的支撑性能和更高的循环效率。为实现能源结构转型下的"双碳"目标提供技术、设备支持。

参考文献:

- [1] 高志刚,李永东. 级联 H 桥型变流器的调制方法建模与优化策略[J]. 电力自动化设备,2010,30(10);12-16
- [2] 李建林,樊辉,徐少华. 大容量级联式电池储能功率调节系统中多脉冲驱动技术研究[J]. 高电压技术, 2015, 41(7): 2121-2126
- [3] 李波. FloTHERM 软件基础与应用实例(第2版)[M]. 北京:中国水利水电出版社,2016
- [4] H K Versteeg, W Malalasekera. An Introduction to Computational Fluid Dynamics; The Finite Volume Method[M]. Wiley: NewYork, 1995.

供水泵站高压永磁同步电动机应用能效分析

张鉴成

佛山市高明佛水供水有限公司,广东 佛山 528000

摘要:水泵机组是水厂供水泵站中的主要供水设备及耗能设备。本文介绍了永磁同步电机技术的原理、发展情况及特点,并以某供水泵站水泵机组改造为实际应用案例,更换永磁同步电动机后,无功损耗大大降低,节电率可达9.3%,节能效果显著,可为相关新建或改造项目提供参考。

关键词:永磁同步电动机:异步电机:供水泵站:水泵机组:节能

中图分类号·TM32

文献标识码·A

文章编号:1001-9006(2025)05-0086-03

Energy Efficiency Analysis of High-voltage Permanent Magnet Synchronous Motor Applications in Water Supply Pump Stations

ZHANG Jiancheng

(Foshan City Gaoming Foshui Water Supply Co., LTD., 528000, Foshan, Guangdong, China)

Abstract: Water pump units were the main water supply equipment and energy-consuming equipment in the water supply pump station of the water plant. This paper introduces the principle, development, and characteristics of permanent magnet synchronous motor technology. It takes the renovation of a water pump unit in a certain water supply pump station as a practical application case. After replacing it with a permanent magnet synchronous motor, the reactive power loss was greatly reduced, and the energy-saving rate could reach 9.3 %. The energy-saving effect was significant. It could provide reference for related new construction or renovation projects.

Key words: permanent magnet synchronous motor; asynchronous motor; water supply pump station; water pump unit; energy saving

供水泵站是水厂乃至于整个供水系统中的耗电大户。为了满足市政供水管网控制点的用水压力需求,供水泵站通常通过水泵机组为自来水进行加压。

为了进一步降低水泵机组的能耗,电动机的优化改进显得尤为重要。对比于目前常用的异步电动机,永磁同步电动机具有效率更高、功率因数更高、更为节能等优点^[1],正作为研究热点受到越来越多的关注。

1 永磁同步技术简介

永磁同步电动机的技术原理是通过内部永磁体转子在电源的作用下,产生一个与电源频率相同的旋转磁场,从而带动电动机旋转。由于其与异步电动机的区别主要在于两者的构造不同^[2],导致两者运行原理也有所差异:永磁同步电动机在转子上安装水磁体磁极(即磁钢),而异步电动机是在定子上安装励磁线圈,通过通人电流电磁感应产生励磁。永磁同步电动机由于无需通人电流励磁,因而具有比异步电动机功率因数更高、功率密度更高、

收稿日期:2025-03-12

作者简介:张鉴成(1976—),男,1999 年毕业于广东工业大学电力系统及其自动化专业,本科,工程师,现在佛山市高明佛水供水有限公司工作,主要从事电气自动化技术管理工作。通信邮箱;linloy@ sina. com

效率更高、噪音更低、重量更轻等优点。

2 高压永磁电动机特点

供水泵站由于设备功率较高,为了减少电能损耗,通常采用高压进线(通常为10kV或6kV)并直供电动机等设备。相比于传统的高压异步电动机,高压永磁同步电动机具有以下显著特点。

- (1)效率更高。高压永磁同步电动机由于采用 永磁体,而无需通入电流产生励磁磁场,减少了励 磁电能损耗,可以具有更高的效率,一般在相同的 功率下,永磁电动机的效率比传统电动机高2%~ 8%或以上。
- (2)功率因数更高。传统电动机由于存在无功 电流,功率因数只有 0.7~0.8 左右。而高压永磁同 步电动机能明显降低无功电流,功率因数接近 1,可 有效提高电网的供电效率。
- (3)高效负载范围更宽。比起传统电动机,永 磁同步电动机除了额定效率更高之外,高效率段的 负载范围更宽,可在负载变化较大时仍能保持高 效率。
- (4)与变频调速运行协同。通过永磁电动机与 变频器搭配运行,可根据实际需要的流量、扬程变 频控制精确调节转速,有效避免过剩能耗。

3 应用案例分析

南方地区某市某水厂供水泵站两台水泵机组已使用超过20年,原电动机额定参数为10kV、280kW、591r/min、功率因数0.73、效率91.9%,由于机组整体效率较低、能耗较高,在2021年进行设备节能改造。改造时,两台新水泵更换为相同型号的中开单级双吸离心泵,一台新电动机改为永磁同步电动机(如图1),另一台则采用异步高效电动机,同步改造、同步试运行,横向对比两种电动机的性能及能耗水平。两台新电动机的额定参数分别为:永磁同步电动机:10kV、315kW、500r/min、功率因数0.951、效率94.2%;异步高效电动机:10kV、315kW、500r/min、功率因数0.951、效率94.2%;异步高效电动机:10kV、315kW、490r/min、功率因数0.71、效率93.6%,均为定频。其中,新电动机比旧电动机功率有所增加,是由于新水泵选型的流量及扬程略有增加。

图 1 改造后的永磁同步电动机及水泵

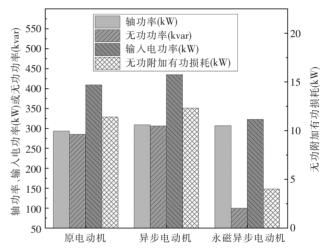


图 2 改造前后输入功率及损耗对比

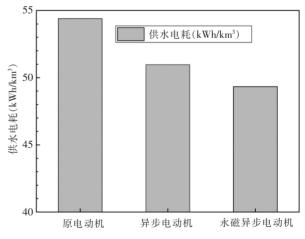


图 3 改造前后供水电耗对比

改造后,经水泵测试,两台新水泵供水电耗均比原水泵下降约8.6%。剔除水泵的影响因素后,根据实际运行数据计算分析(如图2-3),永磁同步电动机的无功功率及损耗均对比于异步电动机大大降低;且由于永磁同步电动机的效率比原异步电动机提升2.3%,比异步高效电动机提升0.6%,因此与原电动机相比,永磁同步电动机的节电率达

9.3%,而异步高效电动机的节电率仅为6.3%。由此可见,永磁同步电动机具有更突出的节能表现。

经济性方面,2021 年时 315 kW 的永磁同步电动机的投资成本约为 52.8 万元/台,同功率的异步高效电动机约为 30 万元/台,假设连续开机的情况下投资回收期分别为 3.2 年、3.6 年。永磁同步电动机虽然投资较高,但回收期更短,经济性更优。

改造后三年多以来永磁同步电动机运行过程 中运行平稳,温度正常,噪音及振动更小,使用效果 良好。

如果针对更大功率的电动机进行改造,且日后 电费单价可能有所上升的情况下,则永磁同步电动 机具备更为巨大的节能潜力及推广应用价值。

4 注意事项

根据实际应用高压永磁同步电动机的使用经验,总结出以下注意事项。

- (1)启动电流大。高压永磁同步电动机采用异步启动直接启动时,启动瞬间电流非常大,通常比相同功率的异步电动机高 50 %。需将该机组的继电保护系统设置为较高的电流值,以免触发报警停机。
- (2)怕高温,存在失磁风险。研究表明,永磁体处于高温环境下持续运行较长时间时,受磁滞损耗上升影响,会造成磁性能衰退甚至失去磁性^[3]。为此,需要时刻监测电动机本体及环境温度,定期补充润滑脂,避免永磁电动机过热状态运行。
- (3)停机后要相隔半小时才能再次启动。受上述两个原因影响,为避免连续启动的大电流造成冲击或温度升高,永磁电动机停机后通常需要静置 30 分钟以上方可重新启动。严禁连续启动。
- (4)需要专业人士进行检修。由于电动机内部 为永磁体等精密结构,为避免损坏电动机,拆解检

查及维修电动机需要专业人士进行操作,禁止私自操作。

- (5)选型时需注意启动方式。高压永磁同步电动机的启动方式分为异步启动及变频启动等方式。异步启动即全压启动,直接通过三相高压交流电启动;变频启动则通过变频器从低负载逐步升频直至设定频率。两种启动方式的实现方法不同,电动机内部构造也有所差异,造成设备成本价格不同。为避免选错类型,在进行电动机设备选型时需要注意。
- (6)与高压异步电动机的变频器不兼容。由于高压永磁同步电动机与高压异步电动机的原理不同,相应配套的变频器型号也有所不同,互不兼容,不能通用,需根据电动机类型搭配相应变频器。

5 结语

通过某水厂供水泵站电动机改造应用案例表明,高压永磁同步电动机节能效果较为显著,具有更高效率、更高功率因数,能实现进一步节能降耗,可作为新建或改造供水泵站电动机选型的优选方案。

相信随着相关技术的迭代升级及稀土材料的开发成熟,永磁设备成本会进一步降低,永磁同步电动机将在供水行业及其它行业得到更广泛的推广应用。

参考文献:

- [1] 孙洁,关世海. 永磁同步电动机的节能计算[J]. 上海大中型电机,2021(2):10-12,53.
- [2] 谢社平,吴桂珍. 高效永磁同步电机在泵站节能改造中的应用 [J]. 给水排水,2021,47(S1):34-37.
- [3] 李永建, 栗浩森, 耿惠, 等. 钕铁硼永磁材料在过热失磁条件下的磁滞损耗测试与分析[J]. 中国电力, 2020, 53(10):50-57.